Experimental Study of Swirl Cooling Flow on a Circular Chamber Using 3-D Stereo-PIV

Author(s):  
Daisy Galeana ◽  
Asfaw Beyene

Experimental study of a swirl flow using 3-D Stereo-PIV (Particle Image Velocimetry) that models a gas turbine blade internal cooling configuration is presented. The work is intended to provide an understanding of the advancements of swirl cooling flow methodology utilizing 3-D Stereo-PIV. The study aims at determining the critical swirl number that has the potential to deliver the maximum heat transfer results. In the swirl cooling flow methodology, cooling air is routed to the turbine blades where it passes through the blade’s internal passages lowering the temperature. An experimental setup with seven discrete tangential jets at three different Reynolds numbers is designed to allow detail measurements of the flow. To provide the particles for velocity measurements an oil particle seeder (LAVision) is used. The circular chamber is made of clear acrylic to allow visualization of the flow phenomena. Data is post-processed in DaVis, velocity calculations are conducted in MATLAB, and TechPlot is used for data visualization. This investigation focuses on the continuous swirl flow that must be maintained via continuous injection of tangential flow, where swirl flow is generated with seven inlets and decays with downstream distance. It was also determined that the critical swirl number, Sn, depends greatly on the location and size of the tangential slots.

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Daisy Galeana ◽  
Asfaw Beyene

Abstract An experimental investigation is presented using three-dimensional (3-D) stereo-particle image velocimetry (stereo-PIV) of a swirl flow that models a gas turbine blade internal cooling configuration. The study is intended to provide an evaluation of the developments of the swirl cooling flow methodology utilizing the 3-D stereo-PIV. The objective is to determine the critical swirl number that has the potential to deliver the maximum axial velocity results. The swirl cooling flow methodology comprises cooling air channeling through the blade’s internal passages lowering the temperature; therefore, the experimental circular chamber is made of acrylic allowing detailed measurements and includes seven discrete tangential jets designed to create the swirl flow. An oil particle seeder (LAVision) is used to provide the particles for velocity measurements while the clear acrylic chamber allows visualization of the flow phenomena. The post-processed data are completed using davis, velocity calculations are conducted in matlab, and techplot is used for data visualization. The focus of this investigation is on the continuous swirl flow that must be sustained via continuous injection of tangential flow at three different Reynolds number, 7000, 14,000, and 21,000, where the swirl flow is generated with seven inlets. Important variations in the swirl number are present near the air inlets and decreases with downstream distance as predicted, since the second half of the chamber has no more inlets. The axial velocity reaches the maximum downstream in the second half of the chamber. The circumferential velocity decreases the downstream distance and reaches the highest toward the center of the chamber.


Author(s):  
D. Brillert ◽  
F.-K. Benra ◽  
H. J. Dohmen ◽  
O. Schneider

The cooling air in the secondary air system of gas turbines is routed through the inside of the rotor shaft. The air enters the rotor through an internal extraction in the compressor section and flows through different components to the turbine blades. Constant improvements of the secondary air system is a basic element to increase efficiency and power of heavy duty gas turbines. It is becoming more and more important to have a precise calculation of the heat transfer and air temperature in the internal cooling air system. This influences the cooling behavior, the material temperature and consequently the cooling efficiency. The material temperature influences the stresses and the creep behavior which is important for the life time prediction and the reliability of the components of the engine. Furthermore, the material temperature influences the clearances and again the cooling flow, e.g. the amount of mass flow rate, hot gas ingestion etc. This paper deals with an investigation of the influence of heat transfer on the internal cooling air system and on the material temperature. It shows a comparison between numerical calculations with and without heat transfer. Firstly, the Navier-Stokes CFD calculation shows the cooling flow physics of different parts of the secondary air system passages with solid heat transfer. In the second approach, the study is expanded to consider the cooling flow physics under conditions without heat transfer. On the basis of these investigations, the paper shows a comparison between the flow with and without heat transfer. The results of the simulation with heat transfer show a negligible influence on the cooling flow temperature and a stronger influence on the material temperature. The results of the calculations are compared with measured data. The influence on the material temperature is verified with measured material temperatures from a Siemens Model V84.3A gas turbine prototype.


Author(s):  
Sunil Patil ◽  
Teddy Sedalor ◽  
Danesh Tafti ◽  
Srinath Ekkad ◽  
Yong Kim ◽  
...  

Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.


Author(s):  
M. Eifel ◽  
V. Caspary ◽  
H. Ho¨nen ◽  
P. Jeschke

This paper presents the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The analysis of the flow is performed experimentally with flow visualization via paint injection into water whereas the flow and the heat transfer are investigated numerically with Ansys CFX utilizing the SST turbulence model. Two sets of calculations are carried out, one under the same conditions as the experiments and another according to realistic hot gas conditions with conjugate heat transfer. The aim is to identify flow phenomena altering the heat transfer in the blade and to manipulate them in order to reduce the thermal load of the material. The operating point of the geometric base configuration is set to Re = 50,000 at the inlet while for the modified geometries the pressure ratio is held constant compared to the base. Flow structures and heat transfer conditions are evaluated and are linked to specific geometric features. Among several investigated configurations one could be identified that leads to a cooling effectiveness 15% larger compared to the base.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
M. Eifel ◽  
V. Caspary ◽  
H. Hönen ◽  
P. Jeschke

This paper presents the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The analysis of the flow is performed experimentally with flow visualization via paint injection into water, whereas the flow and the heat transfer are investigated numerically with ANSYS CFX, utilizing the SST turbulence model. Two sets of calculations are carried out: one under the same conditions as the experiments and another according to realistic hot gas conditions with conjugate heat transfer. The aim is to identify flow phenomena altering the heat transfer in the blade and to manipulate them in order to reduce the thermal load of the material. The operating point of the geometric base configuration is set to Re=50,000 at the inlet while for the modified geometries, the pressure ratio is held constant compared with the base. Flow structures and heat transfer conditions are evaluated and are linked to specific geometric features. Among several investigated configurations one could be identified that leads to a cooling effectiveness 15% larger compared with the base.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F.-K. Benra ◽  
D. Brillert

Improvements in efficiency and performance of gas turbines require a better understanding of the internal cooling air system which provides the turbine blades with cooling air. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation could occur. Experience showed a complex interaction of cooling air under different flow conditions and its particle load. To get more familiar with all these influences and the system itself, a test rig has been built. With this test rig, the behavior of particles in the internal cooling air system can be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. The test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system [1]. The operation of the test rig as well as analysis of particles in such a complex flow system bear many problems, addressed in previous papers [1,2,3]. New theoretical studies give new and more accurate results, compared to the measurements. Furthermore the inspection of the test rig showed dust deposits at unexpected positions of the flow path, which will be discussed by numerical analysis.


Author(s):  
Xueyou Wen ◽  
Dongming Xiao ◽  
Zhongming Gu ◽  
Shugui Du

On the basis of the issues occurring in practical production, an experimental study on the influence of cooling media flow upon the surface temperatures of LP turbine blades is carried out on a turbine. The experiment results show that, when the tolerance range of the cooling media flow is narrowed, the surface temperature difference of the blades in blade row is also narrowed evidently, while it has no obvious relation to the “corresponding probability” between the cooling media flow and the blade surface temperature. A few blades even show a “full non-corresponding” relationship. The reason of this phenomenon is that the vortex-matrix type inner cooling structure of blades makes the casting process more complex. The experiment results are helpful to the confirmation of the water flow tolerance in reason and the perfection of the process detail.


2014 ◽  
Vol 695 ◽  
pp. 371-375
Author(s):  
Nor Azwadi Che Sidik ◽  
Shahin Salimi

Gas turbine cooling can be classified into two different schemes; internal and external cooling. In internal cooling method, the coolant provided by compressor is forced into the cooling flow circuits inside turbine components. Meanwhile, for the external cooling method, the injected coolant is directly perfused from coolant manifold to save downstream components against hot gases. Furthermore, in the latter coolant scheme, coolant is used to quell the heat transfer from hot gas stream to a component. There are several ways in external cooling. Film cooling is one of the best cooling systems for the application on gas turbine blades. This study concentrates on the comparison of experimental, computational and numerical investigations of advanced film cooling performance for cylindrical holes at different angles and different blowing ratios in modern turbine gas.


Author(s):  
S. Naik ◽  
S. D. Probert

Augmenting the heat transfer rates in the internal flow passages of several components of a gas turbine, such as the turbine blades, vanes and combustor walls is an important pre-requisite for maintaining their structural integrity. This is particularly paramount when higher turbine inlet temperatures and pressure ratios are utilised for enhancing the thermal efficiencies of the gas turbine plant. In this study, the heat transfer enhancement, which can be achieved by longitudinal ribs in a variable geometry duct, has been examined. With the base of the ribs maintained at a constant temperature, it was observed that the optimal rib spacing, which corresponded to the maximum heat transfer from the ribs, was a strong function of the rib height to length ratio and the Reynolds number but relatively insensitive to the amount of clearance above the ribs. A design correlation is proposed which shows the distribution of this optimal rib spacing for a wide range of rib geometrical and operational conditions. Comparisons of the longitudinal ribs with pin fin arrays indicated that at rib height to length ratios of ≥ 0.24, higher heat transfers can be achieved with the longitudinal ribs. The frictional characteristics of the longitudinal ribs is comparable to those of circular pin fins. Measurements of the local heat transfer coefficient for the rib surfaces indicate that it is highly non-uniform along the rib height and length and also significantly influenced by the amount of clearance above the ribs. For all the cases examined, it was observed that developing flow conditions (thermally and hydrodynamically) were prevalent within the longitudinal rib channels.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F.-K. Benra ◽  
D. Brillert

Improvements in efficiency and performance of gas turbines require a better understanding of the internal cooling air system which provides the turbine blades with cooling air. With the increase of cooling air passing through the internal air system, a greater amount of air borne particles is transported to the film cooling holes at the turbine blade surface. In spite of their small size, these holes are critical for blockage. Blockage of only a few holes could have harmful effects on the cooling film surrounding the blade. As a result, a reduced mean time between maintenance or even unexpected operation faults of the gas turbine during operation could occure. Experience showed a complex interaction of cooling air under different flow conditions and its particle load. To get more familiar with all these influences and the system itself, a test rig has been built. With this test rig, the behaviour of particles in the internal cooling air system could be studied at realistic flow conditions compared to a modern, heavy duty gas turbine. It is possible to simulate different particle sizes and dust concentrations in the coolant air. The test rig has been designed to give information about the quantity of separated particles at various critical areas of the internal air system [1]. The operation of the test rig as well as analysis of particles in such a complex flow system bear many problems, addressed in the previous paper [1]. New measurements and analysis methods give new and more accurate results, which will be shown in this paper. Furthermore the inspection of the test rig shows dust deposits at unexpected positions of the flow path. Theoretical studies to characterize the flow behaviour of the disperse phase in a continuous fluid using Lagrangian Tracking were also performed. A comparison between the numerical solution and the measurements will be shown in the paper.


Sign in / Sign up

Export Citation Format

Share Document