scholarly journals Parametric modeling compressed ellipsoid of rotation as the analytic surface

2021 ◽  
Vol 2131 (3) ◽  
pp. 032082
Author(s):  
Galina Kravchenko ◽  
Elena Trufanova ◽  
Olga Shilyaeva

Abstract The article deals with the shaping of the analytical surface in the form of a compressed ellipsoid of rotation. In the process of research, the principle of the golden section was applied, an ellipsoid of rotation with optimal parameters for the design of a large-span unique building of the exhibition complex was obtained. To solve the problem of choosing a rational analytical surface in the Lira-CAD software package, three variants of constructive solutions for the frame of the exhibition complex have been developed. The finite element method is used, the most popular numerical calculation method for studying the stress-strain state of large-span buildings and structures. The analysis of the calculation results made it possible to choose the optimal variant of the structural solutions of the building frame. The check of the dynamic characteristics of the proposed structural solution of the building frame is carried out. The obtained results of the dynamic calculation showed the correctness and efficiency of the adopted structural solutions of the building frame.

2019 ◽  
Vol 6 (4) ◽  
pp. 5-8
Author(s):  
Галина Кравченко ◽  
Galina Kravchenko ◽  
Елена Труфанова ◽  
Elena Trufanova ◽  
Инал Дзари-Ипа ◽  
...  

The actual problem for the Republic of Abkhazia — the account of seismic influences at calculation of bearing designs of buildings is investigated. The object of research is the building of the sea station in Sukhum. The spatial plate-rod model of the building frame is made by the finite element method in the software complex “LIRA — SAPR”. Based on the results of dynamic calculation the selected method for determining the seismic influences on the building frame.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2018 ◽  
Vol 38 ◽  
pp. 04004
Author(s):  
Feng Huang

disintegration examination and analysis are employed in flexible terminal breakdown of 110 kV XLPE insulated cables. It is considered that the main reason of breakdown is the separation of the stress cone of the terminal and the fracture of the semi- conductive layer of the cable insulation. Therefore, the finite element method is used to electric field model and simulate the dislocation fault of internal stress cone and outer semiconductor layer of cable insulation. The distribution of the electric field intensity is calculated and compared. The simulation and calculation results verify the validity of the breakdown mechanism analysis, and put forward some practical suggestions.


2021 ◽  
Vol 4 (4) ◽  
pp. 11-31
Author(s):  
S. Koryagina

the article presents the principles and algorithms of the finite element method in solving geotechnical prob-lems taking into account seismic impacts for determining the stress-strain state of structures and slope stabil-ity, implemented in the Midas GTS NX software package. GTS NX allows you to perform calculations of various types of geotechnical problems and solve complex geotechnical problems in a single software envi-ronment. GTS NX covers the entire range of engineering and geotechnical projects, including calculations of the "base-structure" system, deep pits with various mounting options, tunnels of complex shape, consolida-tion and filtration calculations, as well as calculations for dynamic actions and stability calculations. At the same time, all types of calculations in GTS NX can be performed both in 2D and in 3D. The author does not claim to be the author of the finite element method, but he cannot do without pointing out the basic equa-tions, as this affects the definition of the boundaries of use, the formulation of algorithms for constructing calculation schemes and the analysis of calculation results.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hailong Cui ◽  
Huan Xia ◽  
Dajiang Lei ◽  
Xinjiang Zhang ◽  
Zhengyi Jiang

In this paper, a calculation method based on matlab partial differential equations (PDE) tool is proposed to investigate the static characteristics of aerostatic spherical bearings. The Reynolds equation of aerostatic spherical bearings is transformed into a standard elliptic equation. The effects of geometric parameters and operational conditions on the film pressure, bearing film force, and stiffness are studied. The axial and radial eccentricities result in different film pressure distributions; the bearing film force and stiffness are significantly influenced by geometric parameters and operational conditions. The relative optimal parameters are confirmed based on the calculation results. A comparison between the numerical and experimental results is also presented. The highest relative error between the numerical results and the experimental data is 11.3%; the calculation results show good agreements with the experimental data, thus verifying the accuracy of the calculation method used in this paper.


2021 ◽  
Vol 14 (2) ◽  
pp. 54-66
Author(s):  
Svetlana Sazonova ◽  
Viktor Asminin ◽  
Alla Zvyaginceva

The sequence of application of the mixed method for calculating internal forces in statically indeterminate frames with elements of increased rigidity is given. The main system is chosen for the frame with one kinematic and one force unknown. The canonical equations of the mixed method are written, taking into account their meaning. Completed the construction of the final diagram of the bending moments and all the necessary calculations and checks. When calculating integrals, Vereshchagin's rule is applied. The solution of the problem is checked by performing the calculation using the computer program STAB12.EXE; the results of the calculations are numerically verified using the finite element method. An example of the formation of the initial data for the STAB12.EXE program and the subsequent processing of the calculation results, the rules for comparing the numerical results and the results obtained in the calculation of the frame by the mixed method are given.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4952 ◽  
Author(s):  
Tadeusz Sobczyk ◽  
Marcin Jaraczewski

This paper deals with the problem of the leakage inductance calculations in power transformers. Commonly, the leakage flux in the air zone is represented by short-circuit inductance, which determines the short-circuit voltage, which is a very important factor for power transformers. That inductance is a good representation of the typical power transformer windings, but it is insufficient for multi-winding ones. This paper presents simple formulae for self- and mutual leakage inductance calculations for an arbitrary pair of windings. It follows from a simple 1D approach to analyzing the stray field using a discrete differential operator, and it was verified by the finite element method (FEM) calculation results.


Author(s):  
Yong Bai ◽  
Zhimeng Yu

Pipeline on-bottom stability is one of the sophisticated problems in subsea pipeline design procedure. Due to the uncertainty of the pipe-soil interaction and environment loads, including wave, current, or earthquake, etc., it is classified as the typical nonlinear problem. The Finite Element Method is introduced into pipeline engineering several years ago. More and more special engineering software such as AGA, PONDUS are available in market. However, when doing a project, some abnormal data was found when compared the DnV calculation results and AGA. In order to know the behavior of pipeline on seabed under wave and current load, finite element method – ABAQUS is introduced to do this analysis. The ABAQUS/explicit is used to simulate 600s pipeline dynamic response. The pipeline is supposed to be exposed on seabed and the selected seabed model is large enough to avoid the edge effect. ABAQUS calculation results are compared with the requirements in DnV rules to verify the validity of finite element model.


2019 ◽  
Vol 109 ◽  
pp. 00043 ◽  
Author(s):  
Oleksandr Krukovskyi ◽  
Viktoriia Krukovska

The mathematical model has been developed for the coupled processes of the rock massif deformation and gas filtration in a disturbed area around mine working, in the bottom of which there are hard and soft gas-bearing rocks. When solving the problem, the finite element method was used. The calculation results of the displacements, stresses and pressures of methane in the studied area are represented in the paper. It is shown that the difference in the physical and mechanical properties of the bottom rocks of mine working causes the non-uniform distribution of geomechanics and filtration parameters. In more strong sandstone, the stresses concentration increases. Therewith, an intensive process of fractures formation takes place in the argillite and the coal. Methane from the upper part of the gas-bearing sandstone is filtered into the mine working, the destruction of the coal interlayer is accompanied by release of methane and its accumulation under the layer of a strong sandstone. The development of a zone of inelastic deformations leads to the destruction of sandstone. In case of brittle destruction, with the formation of fractures of a certain length, a breakthrough of methane may occur out of the bottom into mine working.


2020 ◽  
Vol 557 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Y. Tajitsu

We have developed a piezoelectric braided cord consisting of a conducting fiber yarn core, piezoelectric poly-l-lactic acid (PLLA) fiber yarn and a polyethylene terephthalate (PET) middle sheath, and a conducting fiber outer shield (piezoelectric PLLA braided cord). Actually, we made various types of piezoelectric PLLA braided cords using Japanese traditional braiding method called as Kumihimo-gumi in Japanese. Furthermore, by optimization based on the calculation results for each type of piezoelectric PLLA Kumihimo-gumi obtained by the finite element method (FEM), we were able to develop a new type of piezoelectric PLLA braided cord with a sensing function for complex motion (piezoelectric PLLA Kumihimo-gumi). Finally, we developed a new wearable sensor for a selfie stick which is a popular smartphone accessory, fabricated from a piezoelectric PLLA Kumihimo-gumi.


Sign in / Sign up

Export Citation Format

Share Document