scholarly journals INFORMATIZATION OF CONSTRUCTION MANAGEMENT AS A BASIS FOR PREVENTING MAN-MADE ACCIDENTS

2021 ◽  
Vol 4 (4) ◽  
pp. 11-31
Author(s):  
S. Koryagina

the article presents the principles and algorithms of the finite element method in solving geotechnical prob-lems taking into account seismic impacts for determining the stress-strain state of structures and slope stabil-ity, implemented in the Midas GTS NX software package. GTS NX allows you to perform calculations of various types of geotechnical problems and solve complex geotechnical problems in a single software envi-ronment. GTS NX covers the entire range of engineering and geotechnical projects, including calculations of the "base-structure" system, deep pits with various mounting options, tunnels of complex shape, consolida-tion and filtration calculations, as well as calculations for dynamic actions and stability calculations. At the same time, all types of calculations in GTS NX can be performed both in 2D and in 3D. The author does not claim to be the author of the finite element method, but he cannot do without pointing out the basic equa-tions, as this affects the definition of the boundaries of use, the formulation of algorithms for constructing calculation schemes and the analysis of calculation results.

2014 ◽  
Vol 39 (10) ◽  
pp. 7229-7239 ◽  
Author(s):  
Sergio Luiz Moni Ribeiro Filho ◽  
Marcelo Oliveira Gomes ◽  
Carlos Henrique Lauro ◽  
Lincoln Cardoso Brandão

2021 ◽  
Vol 14 (2) ◽  
pp. 54-66
Author(s):  
Svetlana Sazonova ◽  
Viktor Asminin ◽  
Alla Zvyaginceva

The sequence of application of the mixed method for calculating internal forces in statically indeterminate frames with elements of increased rigidity is given. The main system is chosen for the frame with one kinematic and one force unknown. The canonical equations of the mixed method are written, taking into account their meaning. Completed the construction of the final diagram of the bending moments and all the necessary calculations and checks. When calculating integrals, Vereshchagin's rule is applied. The solution of the problem is checked by performing the calculation using the computer program STAB12.EXE; the results of the calculations are numerically verified using the finite element method. An example of the formation of the initial data for the STAB12.EXE program and the subsequent processing of the calculation results, the rules for comparing the numerical results and the results obtained in the calculation of the frame by the mixed method are given.


Author(s):  
Yong Bai ◽  
Zhimeng Yu

Pipeline on-bottom stability is one of the sophisticated problems in subsea pipeline design procedure. Due to the uncertainty of the pipe-soil interaction and environment loads, including wave, current, or earthquake, etc., it is classified as the typical nonlinear problem. The Finite Element Method is introduced into pipeline engineering several years ago. More and more special engineering software such as AGA, PONDUS are available in market. However, when doing a project, some abnormal data was found when compared the DnV calculation results and AGA. In order to know the behavior of pipeline on seabed under wave and current load, finite element method – ABAQUS is introduced to do this analysis. The ABAQUS/explicit is used to simulate 600s pipeline dynamic response. The pipeline is supposed to be exposed on seabed and the selected seabed model is large enough to avoid the edge effect. ABAQUS calculation results are compared with the requirements in DnV rules to verify the validity of finite element model.


2017 ◽  
Vol 2 (2) ◽  
pp. 97
Author(s):  
Yu.N. Loginov ◽  
N.А. Babailov ◽  
D.N. Pervukhina

<p class="TTPAbstract">In this study, the calculation results of the briquette stress state by the Finite element method are presented. The fields of compressive and tensile stresses in briquette are determined. The conditions affecting the process of the briquette destruction are considered.</p>


2012 ◽  
Vol 518-523 ◽  
pp. 2526-2529
Author(s):  
Qi Ming Xiao ◽  
Ke Shu Liu

Electrostatic precipitator is a kind of important dust collecting equipment. The rapping acceleration is the standard of electrostatic precipitator design and manufacturing. The aim of the work reported in this paper was find a new method for solving the rapping acceleration. Based on the numerical analytical method and the dynamic display algorithm, this paper is to build a new method for solving the rapping acceleration of electrostatic precipitator by using finite element method. By comparing the results of finite element method and the model test data and analyzing calculation results, this method is proved to be correct and effective. Using this method in the analyzing of practical equipment, the result basically tallies with the actual result. The finite element method can be used conveniently in different plate profiles, different ways of hanging, striking hammers and different methods of rapping. So the finite element method has an important practical significance in the analyzing of existing plate and the researching of new plate.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7091
Author(s):  
Sebastian Berhausen ◽  
Stefan Paszek

The paper presents a description of the method and the results of calculating the leakage reactance of high-power synchronous generator end windings using the finite element method. This reactance is one of the components of the stator leakage reactance of synchronous generators. The calculations were carried out under the assumption of a three-dimensional field distribution in a synchronous generator. The thus calculated value of the leakage reactance of the end windings was compared with the calculation results obtained using traditional, analytical formulas known from the literature. The analysis of the influence of the reactance value of the end windings on the transient waveforms at a three-phase short-circuit of the stator windings was performed based on a two-dimensional field-circuit model.


Author(s):  
O. M. Ustarkhanov ◽  
H. M. Muselemov ◽  
M. S. Abakarov ◽  
M. S. Alibekov

Objectives. In this research, we set out to explore the possibility of increasing the resistance of three-layered panels with a pyramid filler filled with fibrous material to dynamic loads. Although issues associated with dynamic impact, penetration of solid bodies and breaking of solid barriers have always been of interest, particularly in military affairs, they are increasingly attracting the attention of researchers investigating various industrial problems.Method. A calculation was performed using the finite element method (FEM), which is widely used in various areas including construction. The possibility of calculating the movement of a solid body in fibrous material using the FEM, namely using the LIRA-SAPR software, was considered.Results. From the constructed models, it can be seen how the striker moves inside the fibrous material. Therefore, using the SC LIRA-SAPR allows the work of the filler to be assessed while a solid body moves inside it. The results of the calculation of striker movement in fibrous material depending on the speed of the body (striker) and the density of the filler (fibre) are shown in figures.Conclusion. The conducted numerical studies showed that a discrepancy between the calculation results for a three-layered structure under dynamic loads using the FEM and analytical dependencies was about 10%. 


Author(s):  
Mourad Dougdag ◽  
Mohammed Ouali

The dynamic modeling of the rotating machines system is required to understand their dynamic behavior and the associated vibration problems. Fortunately, this modeling has seen a great development, since the use of Timoshenko or Euler-Bernoulli beam, followed by the Jeffcott and Laval rotor until using fine and complex techniques these days. Unfortunately, this development remains still insufficient to describe in a realistic way the dynamic behavior, in particular the rotor. Nowadays, the using of the finite element method, which is considered as the powerful numerical tool, gave a great help. This method can model as real as possible the phenomena that influence the rotor behavior, but this tool remains inapplicable to describe its behavior when it undergoes at the same time motion, deformations and the faults effects. To resolve these problems, a number of mathematical artifices are used, but, these methods are some times very difficult or are too complex and the result obtained is not always as good as it hopes. In fact, the deformed rotor resolution method is reduced to a modal solution, which does not show the real deformations during time in many cases. In order to simplify the resolution and to show rotor movement with deformation under faults effects, a method is proposed to allow a better approach of this problem. This method is based on subdividing the structure to mass-point sections that make possible to consider the rotational motion with deformations of the rotors. In this work, the above method is implemented on engineering simulation software dedicated for rotordynamics, and the calculation results are validated against experimental data of fault simulations in rotors as presented in the following sections of this paper.


Sign in / Sign up

Export Citation Format

Share Document