scholarly journals Kinematic model of the suspension of an electric car

2021 ◽  
Vol 2131 (5) ◽  
pp. 052009
Author(s):  
A Efimov ◽  
O Fedotova ◽  
V Goryunov ◽  
A Korostelkin ◽  
R Petrov ◽  
...  

Abstract The purpose of the work considered in this article is to develop approaches and methods for designing an electric vehicle from the concept phase to production based on the use of digital simulation. In this study, calculations were performed using the calculation of the kinematic model of the electric car suspension and CAE. Based on the results of the calculations and their compliance with the matrix of targets and resource constraints, the geometry of the suspension parts was changed during the study. For each of the iterations of the geometry, the types and materials were selected for the subsequent production of electric car suspension parts. The application of the above-mentioned approach from the earliest stages of work allowed us not only to achieve the required criteria for the mechanical characteristics of the structure, but also to comply with the conditions for reducing the development time, the cost of production and improving its quality.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 431-438
Author(s):  
Jian Liu ◽  
Lihui Wang ◽  
Zhengqi Tian

The nonlinearity of the electric vehicle DC charging equipment and the complexity of the charging environment lead to the complex and changeable DC charging signal of the electric vehicle. It is urgent to study the distortion signal recognition method suitable for the electric vehicle DC charging. Focusing on the characteristics of fundamental and ripple in DC charging signal, the Kalman filter algorithm is used to establish the matrix model, and the state variable method is introduced into the filter algorithm to track the parameter state, and the amplitude and phase of the fundamental waves and each secondary ripple are identified; In view of the time-varying characteristics of the unsteady and abrupt signal in the DC charging signal, the stratification and threshold parameters of the wavelet transform are corrected, and a multi-resolution method is established to identify and separate the unsteady and abrupt signals. Identification method of DC charging distortion signal of electric vehicle based on Kalman/modified wavelet transform is used to decompose and identify the signal characteristics of the whole charging process. Experiment results demonstrate that the algorithm can accurately identify ripple, sudden change and unsteady wave during charging. It has higher signal to noise ratio and lower mean root mean square error.


Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


Author(s):  
S. Kaizerman ◽  
B. Benhabib ◽  
R. G. Fenton ◽  
G. Zak

Abstract A new robot kinematic calibration procedure is presented. The parameters of the kinematic model are estimated through a relationship established between the deviations in the joint variables and the deviations in the model parameters. Thus, the new method can be classified as an inverse calibration procedure. Using suitable sensitivity analysis methods, the matrix of the partial derivatives of joint variables with respect to robot parameters is calculated without having explicit expressions of joint variables as a function of task space coordinates (closed inverse kinematic solution). This matrix provides the relationship between the changes in the joint variables and the changes in the parameter values required for the calibration. Two deterministic sensitivity analysis methods are applied, namely the Direct Sensitivity Approach and the Adjoint Sensitivity Method. The new calibration procedure was successfully tested by the simulated calibrations of a two degree of freedom revolute-joint planar manipulator.


Author(s):  
G. Zak ◽  
R. G. Fenton ◽  
B. Benhabib

Abstract Most industrial robots cannot be off-line programmed to carry out a task accurately, unless their kinematic model is suitably corrected through a calibration procedure. However, proper calibration is an expensive and time-consuming procedure due to the highly accurate measurement equipment required and due to the significant amount of data that must be collected. To improve the efficiency of robot calibration, an optimization procedure is proposed in this paper. The objective of minimizing the cost of the calibration is combined with the objective of minimizing the residual error after calibration in one multiple-objective optimization. Prediction of the residual error for a given calibration process presents the main difficulty for implementing the optimization. It is proposed that the residual error is expressed as a polynomial function. This function is obtained as a result of fitting a response surface to either experimental or simulated sample estimates of the residual error. The optimization problem is then solved by identifying a reduced set of possible solutions, thus greatly simplifying the decision maker’s choice of an effective calibration procedure. An application example of this method is also included.


2021 ◽  
Vol 7 (2) ◽  
pp. 79-89
Author(s):  
Indra Swarna ◽  
James Purnama ◽  
Randy Anthony

Kunyahku is an online catering platform that provides catalogs of menus from local caterer near the user and become the distributor that will take the order and deliver them. In developing an application, the most important aspect for small start-up companies is to have a development stack that can deliver the app into multiple platform by using a single code base to reduce the cost of developers, improve efficiency and reduce the time to develop the application itself. To provide the necessity of building an application for Kunyahku, this paper is aimed to find the most suitable cross platform framework for developing the Kunyahku application. This research focuses on comparison between existing popular cross-platform and proving the suitable one to be used in development cycle in the case of Kunyahku requirements. Sets of test and comparison were conducted in order to compare the most suitable cross platform between React Native and Flutter such as render test and comparing each advantage coming out from using each of the cross-platform.After all the requirements are gathered and then the most suitable framework will be chosen which is Flutter. Performance analysis and the benefits of using Flutter framework are elaborated and thus proving it is the most suitable development stack to be used in Kunyahku case and the development time can be reduced since it is a cross-platform technology that output the application into three different platform rather than managing separate platform for each different one. Testing shows that flutter also met all the requirements thus proving flutter address the problems of scalability and faster development compared to developing each native platform one by one.


Author(s):  
M. Ghazal ◽  
A. Talezadeh ◽  
M. Taheri ◽  
M. Nazemi-Zade

To perform mission in variant environment, several types of mobile robot has been developed an implemented. The mobile robot HILARE is a known wheeled mobile robot which has two fixed wheels and an off-entered orientable wheel. Due to extended application of this robot, its dynamic analysis has attracted a great deal of interests. This article investigates dynamic modeling and motion analysis of the mobile robot HILARE. As the wheels of the robot have kinematic constraints, the constraints of wheels are taken into consideration and the matrix form of the kinematic model of the robot is derived. Furthermore, dynamic model of the robot is developed by consideration of kinematic constraints. To derive dynamic equations of the robot, the Lagrange multiplier method is employed and the governing equations of the robot in state-pace form are presented. Then, some simulations are presented to show applicability of the proposed formulation for dynamic analysis of the mobile robot HILARE.


Author(s):  
M.O. Kaptakov

In this work, the mechanical properties of composite samples prepared using a conventional and nanomodified matrix were studied. The thickness of the monolayers in the samples was 0,2 μm. It was found in experiments, that the addition of fullerene soot as a nanomodifierled to an increase in the mechanical properties of the samples along the direction of reinforcement. At the same time, an improvement in the quality of the contact of the matrix with the fibers in the samples with the nanomodifier was observed: on the fracture surface, the nanomodified matrix envelops the fibers, while the usual matrix completely exfoliates. The obtained effects of changing the strength of composites can be associated, among other things, with a change in the level of residual stresses arising in composites during nanomodification. Analytical and numerical modeling methods are used to explain these effects.


2022 ◽  
pp. 1-24
Author(s):  
Isa S. Qamber ◽  
Mohamed Y. Alhamad

The movements for any type of electric vehicle (EV) can be powered by wheels or driven by rotary motors. EVs derive their power from various sources, including fossil fuels. In the long term, reducing the cost of electrically powered vehicles (EDV) is seen as an essential ingredient to increase consumer acceptance. In addition, it aims to reduce the weight and volume of EDV. Moreover, the focus is on improving the performance, efficiency, and reliability of the EDV. The development of innovative modules is important when the acceleration of production and marketing needs to be improved. Consumers are looking for the production and transmission of electrical energy. This contributes to a greener environment. One of the most important parts of an EV is its battery. A proposed model presented in this chapter considers several parameters: solar radiation (PV panels), EV backup battery, and main charger. The model allows energy storage to be developed efficiently.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988696
Author(s):  
Ahsan Elahi ◽  
Arslan Ahmed Amin ◽  
Umar Tabraiz Shami ◽  
Muhammad Tayyab Usman ◽  
Muhammad Sajid Iqbal

Wireless charging has become an emerging challenge to reduce the cost of a conventional plug-in charging system in electric vehicles especially for supercapacitors that are utilized for quick charging and low-energy demands. In this article, the design of an efficient wireless power transfer system has been presented using resonant inductive coupling technique for supercapacitor-based electric vehicle. Mathematical analysis, simulation, and experimental implementation of the proposed charging system have been carried out. Simulations of various parts of the systems are carried out in two different software, ANSYS MAXWELL and MATLAB. ANSYS MAXWELL has been used to calculate the various parameters for the transmitter and receiver coils such as self-inductance ( L), mutual inductance ( M), coupling coefficient ( K), and magnetic flux magnitude ( B). MATLAB has been utilized to calculate output power and efficiency of the proposed system using the mathematical relationships of these parameters. The experimental setup is made with supercapacitor banks, electric vehicle, wattmeters, controller, and frequency generator to verify the simulation results. The results show that the proposed technique has better power transfer efficiency of more than 75% and higher power transfer density using a smaller coil size with a bigger gap of 4–24 cm.


2019 ◽  
Author(s):  
Ian Kay ◽  
Roja Esmaeeli ◽  
Seyed Reza Hashemi ◽  
Ajay Mahajan ◽  
Siamak Farhad

Abstract This paper presents the application of robotics for the disassembly of electric vehicle lithium-ion battery (LIB) packs for the purpose of recycling. Electric vehicle battery systems can be expensive and dangerous to disassemble, therefore making it cost inefficient to recycle them currently. Dangers associated with high voltage and thermal runaway make a robotic system suitable for this task, as the danger to technicians or workers is significantly reduced, and the cost to operate a robotic system would be potentially less expensive over the robots lifetime. The proposed method allows for the automated or semi-automated disassembly of electric vehicle LIB packs for the purpose of recycling. In order to understand the process, technicians were studied during the disassembly process, and the modes and operations were recorded. Various modes of interacting with the battery module were chosen and broken down into gripping and cutting operations. Operations involving cutting and gripping were chosen for experimentation, and custom end of arm tooling was designed for use in the disassembly process. Path planning was performed offline in both MATLAB/Simulink and ROBOGUIDE, and the simulation results were used to program the robot for experimental validation.


Sign in / Sign up

Export Citation Format

Share Document