scholarly journals Direct measurements of three-dimensional localization of light near the nanostructures with sub-wavelength spatial resolution

2012 ◽  
Vol 345 ◽  
pp. 012005
Author(s):  
A V Demin ◽  
A A Ezhov ◽  
G G Levin ◽  
V I Panov
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Parsa Omidi ◽  
Mohamadreza Najiminaini ◽  
Mamadou Diop ◽  
Jeffrey J. L. Carson

AbstractSpatial resolution in three-dimensional fringe projection profilometry is determined in large part by the number and spacing of fringes projected onto an object. Due to the intensity-based nature of fringe projection profilometry, fringe patterns must be generated in succession, which is time-consuming. As a result, the surface features of highly dynamic objects are difficult to measure. Here, we introduce multispectral fringe projection profilometry, a novel method that utilizes multispectral illumination to project a multispectral fringe pattern onto an object combined with a multispectral camera to detect the deformation of the fringe patterns due to the object. The multispectral camera enables the detection of 8 unique monochrome fringe patterns representing 4 distinct directions in a single snapshot. Furthermore, for each direction, the camera detects two π-phase shifted fringe patterns. Each pair of fringe patterns can be differenced to generate a differential fringe pattern that corrects for illumination offsets and mitigates the effects of glare from highly reflective surfaces. The new multispectral method solves many practical problems related to conventional fringe projection profilometry and doubles the effective spatial resolution. The method is suitable for high-quality fast 3D profilometry at video frame rates.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pablo Cencillo-Abad ◽  
Nikolay I. Zheludev ◽  
Eric Plum

1984 ◽  
Vol 106 (1) ◽  
pp. 72-78 ◽  
Author(s):  
D. E. Olson ◽  
K. H. Parker ◽  
B. Snyder

This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to ±5 percent and resolves flow direction to within 1 deg at airspeeds ≥10 cm/s. Spatial resolution is ±0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.


2015 ◽  
Vol 9 (1) ◽  
pp. 1-11
Author(s):  
Gábor Bakó ◽  
Gábor Kovács ◽  
Zsolt Molnár ◽  
Judit Kirisics ◽  
Eszter Góber ◽  
...  

The red mud disaster occurred on 4th October 2010 in Hungary has raised the necessity of rapid intervention and drew attention to the long-term monitoring of such threat. Both the condition assessment and the change monitoring indispensably required the prompt and detailed spatial survey of the impact area. It was conducted by several research groups - independently - with different recent surveying methods. The high spatial resolution multispectral aerial photogrammetry is the spatially detailed (high resolution) and accurate type of remote sensing. The hyperspectral remote sensing provides more information about material quality of pollutants, with less spatial details and lower spatial accuracy, while LIDAR ensures the three-dimensional shape and terrain models. The article focuses on the high spatial resolution, multispectral electrooptical method and the evaluation methodology of the deriving high spatial resolution ortho image map, presenting the derived environmental information database


2021 ◽  
Author(s):  
Omar Torres ◽  
Hiren Jethva ◽  
Changwoo Ahn ◽  
Glen Jaross ◽  
Diego Loyola

<p>The NASA-TROPOMI aerosol algorithm (TropOMAER), is an adaptation of the currently operational OMI near-UV (OMAERUV & OMACA) inversion schemes, that take advantage of TROPOMI’s unprecedented fine spatial resolution at UV wavelengths, and the availability of ancillary aerosol-related information to derive aerosol loading in cloud-free and above-cloud aerosols scenes. In this presentation we will introduce the NASA TROPOMI aerosol algorithm and discuss initial evaluation results of retrieved aerosol optical depth (AOD) and single scattering albedo (SSA) by direct comparison to AERONET AOD direct measurements and SSA inversions. We will also demonstrate TropOMAER retrieval capabilities in the context of recent continental scale aerosol events.</p>


2019 ◽  
Vol 490 (4) ◽  
pp. 4622-4637 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT Using our new state-of-the-art core-collapse supernova (CCSN) code Fornax, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M⊙ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and ϕ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.


2020 ◽  
Vol 10 (22) ◽  
pp. 8088
Author(s):  
Erkhembaatar Dashdavaa ◽  
Anar Khuderchuluun ◽  
Hui-Ying Wu ◽  
Young-Tae Lim ◽  
Chang-Won Shin ◽  
...  

With the development of the holographic printer, printing synthetic hologram requires smaller holographic element (hogel) size to improve spatial resolution of the reconstruction. On the contrary, a larger hogel size affords higher angular resolution, but it leads to a lower lateral resolution and there exists a trade-off problem. In this paper, a hologram synthesis method based on three-dimensional (3D) rendering of computer-generated holographic stereogram (HS) is proposed to limit the spatial-angular trade-off problem. The perspectives of the 3D scene are captured by re-centering the camera method and transformed into parallax-related images by a proposed pixel re-arrangement algorithm for holographic printing. Unlike the conventional approaches, the proposed algorithm not only improves the angular resolution of the reconstruction while maintaining the hogel size fixed, but also keeps the spatial resolution without degradation. The effectiveness of the proposed method is verified by numerical simulation and an optical experiment.


Sign in / Sign up

Export Citation Format

Share Document