Elemental distribution in ascending aortic after radiotherapy and chemotherapy by Low Energy X-ray Fluorescence spectroscopy

2018 ◽  
Vol 13 (05) ◽  
pp. C05011-C05011
Author(s):  
A. Mantuano ◽  
C.L. Mota ◽  
A. Pickler ◽  
G. Sena ◽  
D. Braz ◽  
...  
BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7623-7634
Author(s):  
João Paulo Rodrigues Marques ◽  
Gabriela Aferri ◽  
Gabriel Sgabieiro Montanha ◽  
Fernanda Trilstz Perassolo Guedes ◽  
Marli Misaki Soares ◽  
...  

Sugarcane is widely used as feed for cattle, buffalo, goats, and sheep, primarily during drought periods. Some sugarcane cultivars contain low digestibility fibers, which compromises animal performance. Thus, the present study reports on anatomical, chemical, and elemental analysis along stem internodes of two sugarcane cultivars to better understand the structure-digestibility relationship of industrial cultivar cv. IACSP95-5000 compared to a forage cultivar (cv. IAC86-2480). X-ray microdensitometry assays revealed that the peripheral tissues of IACSP95-5000 were denser than IAC86-2480. In the first internode, cv. IACSP95-5000 has more vascular bundles and occupy a larger area. In addition, it had more fibers surrounding the vascular bundles compared to cv. IAC86-2480. However, fibers are prominent at the fifth internode in both cultivars but are more evident in cv. IACSP95-5000. The microprobe X-ray fluorescence spectroscopy analysis showed that silicon and calcium elemental distribution were similar for both cultivars. The structural features of the forage sugarcane presented herein are able to explain the digestibility differences between cultivars.


1996 ◽  
Vol 437 ◽  
Author(s):  
T.A. Callcotit ◽  
J.J. Jia ◽  
L. Zhou ◽  
D.L. Ederer ◽  
L.J. Terminello ◽  
...  

AbstractSoft x-ray fluorescence spectroscopy provides an element and angular momentum selective measure of the valence band density of states in complex materials. Results are presented demonstrating the use of SXF both as a means of solving materials problems and as a means of increasing our fundamental understanding of low energy excitation processes in various types of materials. As examples of materials applications, we discuss the L2,3 spectra of Si in various environments, and describe radiation damage studies in Beryl. Fundamental new insights are provided by the study of SXF spectra excited near an x-ray threshold. For such excitation, recent work demonstrates that an electronic Raman scattering process can greatly modify the normal fluorescence spectrum. We discuss near threshold studies of graphite, h-BN and NiS to demonstrate that the nature of the electronic excitation processes differs dramatically in various classes of materials and provides important new insights into their properties.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Carlo Marini ◽  
Anna Maria Diaz Rovira ◽  
Nitya Ramanan ◽  
Wojciech Olszewski ◽  
Boby Joseph ◽  
...  

AbstractCombining micro-X-ray absorption spectroscopy (μXAS) and micro-X-ray fluorescence spectroscopy (μXRF) is a promising approach for the investigation of complex multi-phase systems. In this work, we have employed this approach to investigate natural sphalerite, the most common form of Zinc Sulfide. Spatially resolved elemental distribution maps of common 3d metal atoms (Zn, Cu, Ni, Co, and Fe) are superimposed with chemical speciation and structural parameter maps in order to understand the sphaleriteore-formation process and metamorphosis. Chemical speciation and structural parameters have been obtained by analyzing the μXAS spectra collected in several representative points of the sample, after μXRF mapping. In the present case, this X-ray based approach has permitted to determine the spatial distribution of the Zn species in sphalerite. The presence of two main zincite and smithsonite inclusions has been established, with the latter located close to copper impurity center. Since copper is known to remarkably reduce the corrosion resistance of zinc, resulting in the formation of carbonate as the corrosion product, this implies a possible role of Cu in the growth of the carbonate inclusions. The results obtained highlight the efficiency of this method in univocally identifying the spatial distribution of phases in complex systems, thanks to the simultaneous access to complementary information.


2018 ◽  
Vol 13 (03) ◽  
pp. C03032-C03032 ◽  
Author(s):  
J. Bufon ◽  
S. Schillani ◽  
M. Altissimo ◽  
P. Bellutti ◽  
G. Bertuccio ◽  
...  

Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Sign in / Sign up

Export Citation Format

Share Document