scholarly journals High intensity proton beam impact at 440 GeV/c on Mo and Cu coated CfC/graphite and SiC/SiC absorbers for beam intercepting devices

2022 ◽  
Vol 17 (01) ◽  
pp. P01019
Author(s):  
J. Maestre ◽  
C. Bahamonde ◽  
I. Lamas Garcia ◽  
K. Kershaw ◽  
N. Biancacci ◽  
...  

Abstract Beam Intercepting Devices (BIDs) are essential protection elements for the operation of the Large Hadron Collider (LHC) complex. The LHC internal beam dump (LHC Target Dump Injection or LHC TDI) is the main protection BID of the LHC injection system; its main function is to protect LHC equipment in the event of a malfunction of the injection kicker magnets during beam transfer from the SPS to the LHC. Several issues with the TDI were encountered during LHC operation, most of them due to outgassing from its core components induced by electron cloud effects, which led to limitations of the injector intensity and hence had an impact on LHC availability. The absorbing cores of the TDIs, and of beam intercepting devices in general, need to deal with high thermo-mechanical loads induced by the high intensity particle beams. In addition, devices such as the TDI — where the absorbing materials are installed close to the beam, are important contributors to the accelerator impedance budget. To reduce impedance, the absorbing materials that make up the core must be typically coated with high electrical conductivity metals. Beam impact testing of the coated absorbers is a crucial element of development work to ensure their correct operation. In the work covered by this paper, the behaviour of several metal-coated absorber materials was investigated when exposed to high intensity and high energy proton beams in the HiRadMat facility at CERN. Different coating configurations based on copper and molybdenum, and absorbing materials such as isostatic graphite, Carbon Fibre Composite (CfC) and Silicon Carbide reinforced with Silicon Carbide fibres (SiC-SiC), were tested in the facility to assess the TDI's performance and to extract information for other BIDs using these materials. In addition to beam impact tests and an extensive Post Irradiation Examination (PIE) campaign to assess the performance of the coatings and the structural integrity of the substrates, extensive numerical simulations were carried out.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 506
Author(s):  
J. M. Prabhudass ◽  
K. Palanikumar ◽  
Elango Natarajan ◽  
Kalaimani Markandan

Recently, there has been an inclination towards natural fibre reinforced polymer composites owing to their merits such as environmental friendliness, light weight and excellent strength. In the present study, six laminates were fabricated consisting of natural fibres such as Kenaf fibre (Hibiscus cannabinus L.) and Bamboo fibre, together with multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers in the epoxy matrix. Mechanical testing revealed that hybridization of natural fibres was capable of yielding composites with enhanced tensile properties. Additionally, impact testing showed a maximum improvement of ≈80.6% with the inclusion of MWCNTs as nanofiller in the composites with very high energy absorption characteristics, which were attributed to the high specific energy absorption of carbon nanotubes. The viscoelastic behaviour of hybridised composites reinforced with MWCNTs also showed promising results with a significant improvement in the glass transition temperature (Tg) and 41% improvement in storage modulus. It is worth noting that treatment of the fibres in NaOH solution prior to composite fabrication was effective in improving the interfacial bonding with the epoxy matrix, which, in turn, resulted in improved mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.


Author(s):  
Marco Hornung ◽  
Sebastian Keppler ◽  
Alexander Kessler ◽  
Hartmut Liebetrau ◽  
Andreas Seidel ◽  
...  

2018 ◽  
Vol 89 (11) ◽  
pp. 115106 ◽  
Author(s):  
Genbai Chu ◽  
Tao Xi ◽  
Minghai Yu ◽  
Wei Fan ◽  
Yongqiang Zhao ◽  
...  

1998 ◽  
Vol 510 ◽  
Author(s):  
P. Leveque ◽  
S. Godey ◽  
P.O. Renault ◽  
E. Ntsoenzok ◽  
J.F. Barbot

AbstractCommercial n-type 4H-SiC wafers were implanted with doses of MeV alpha particles, high enough to cause majority carrier modification. Analysis of infrared reflectivity spectra shows that the implanted crystals can be divided into three layers: a surface layer of about 30 nm followed by a compensation layer where the energy transfer of the incident particles is low and an overdoping layer in the region of maximum defect production, i.e. near the theoretical mean range of ions Rp


2020 ◽  
Vol 391 ◽  
pp. 125722 ◽  
Author(s):  
А.I. Ryabchikov ◽  
D.O. Sivin ◽  
I.A. Bozhko ◽  
I.B. Stepanov ◽  
A.E. Shevelev

Respuestas ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 45 ◽  
Author(s):  
Daniel Alejandro Rodríguez-Caro ◽  
Enrique Vera-López ◽  
Helver Mauricio Muñoz-Barajas

Antecedentes: La protección catódica por corriente impresa es uno de los métodos para prevenir la corrosión de tuberías o tanques, preservando el estado estructural y la integridad del material. Para que un sistema de protección catódica funcione correctamente debe existir un control sobre las variables eléctricas que intervienen en el proceso, es por ello que se hace necesario monitorear variables tales como (Voltaje, Corriente y Potencial de protección). Objetivo: De esta manera se desarrolla un sistema de adquisición y monitoreo de datos en tiempo real, con el propósito de aumentar la accesibilidad a las variables eléctricas y de esta forma mejorar el funcionamiento del sistema de protección catódica. Métodos: El sistema de monitoreo y análisis de la información se basa en el concepto de SHM (Structural Health Monitoring), el cual consta de; un sistema electrónico de adquisición y envío remoto de señales (micro controlador y sistema GSM de comunicaciones) y un sistema de visualización y análisis de la información en un sistema móvil (celular), usando un servidor web para ello. Teniendo en cuenta que la condición de integridad estructural del ducto está determinada por el correcto funcionamiento del rectificador. Resultados: se logró implementar un sistema de monitoreo y visualización remota de las variables principales de un sistema de protección catódica. Se desarrolló un algoritmo basado en el concepto de SHM, el cual permite correlacionar, generar tendencia y establecer criterios de funcionamiento del sistema de protección catódica que permiten establecer si el sistema está asegurando la integridad estructural del ducto de transporte de crudo. Conclusión: lo novedoso del presente trabajo consiste en mostrar el comportamiento en tiempo real de las variables necesarias para analizar si el ducto está siendo correctamente protegido y generar las alarmas e informes sobre protección catódica, lo cual es la base del concepto de SHM (Structural Health Monitoring).AbstractBackground: Cathodic protection by impressed current is one of the methods to prevent corrosion of pipes or tanks, preserving the structural state and integrity of the material. For a cathodic protection system to function properly there must to be a control over the electrical variables involved in the process, which is why it is necessary to monitor variables such as (voltage, current and potential protection). Objective: to develop a system of data acquisition and monitoring in real time, in order to increase accessibility to electrical variables and thus improve the operation of the cathodic protection system. Methods: The monitoring and information analysis system is based on the concept of SHM (Structural Health Monitoring), which consists of an electronic system for remote acquisition and sending of signals (micro controller and GSM communications system) and a system for visualization and analysis of information in a mobile system (cell) using a web server for it. Given that the condition of structural integrity of the pipeline is determined by the correct operation of the rectifier. Results: It was possible to implement a monitoring and remote viewing system of the main variables of a cathodic protection system. An algorithm based on the concept of SHM was developed, allowing to correlate, generate trend and establish performance criteria for the cathodic protection system which allows to establish whether the system is ensuring the structural integrity of the crude transportation pipeline. Conclusion: the novelty of this work is to show the realtime behavior of the variables needed to analyze whether the pipeline is being properly protected and generate alarms and reports regarding cathodic protection, which is based on the concept of SHM (Structural Health Monitoring).Palabras Clave: corriente, corrosión, Innovación, monitoreo, SHM (Structural Health Monitoring)


Sign in / Sign up

Export Citation Format

Share Document