Highly sensitive T1–T2 dual-mode MRI probe based on ultra-small gadolinium oxide-decorated iron oxide nanocrystals

Author(s):  
Yashuang Miao ◽  
Peirong Chen ◽  
Miao Yan ◽  
Jianmin Xiao ◽  
Biao Hong ◽  
...  
2021 ◽  
Author(s):  
Tahereh Tehrani ◽  
Soraia Meghdadi ◽  
Zohreh Salarvand ◽  
Behnam Tavakoli ◽  
Kiamars Eskandari ◽  
...  

A highly sensitive anthracene–quinoline based dual-mode sensor has been synthesized and used for the fluorometric and colorimetric detection of Fe3+ and in live cell imaging.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 995
Author(s):  
Yucheng Peng ◽  
Xiaomeng Wang ◽  
Yue Wang ◽  
Yue Gao ◽  
Rui Guo ◽  
...  

The design of multimodal imaging nanoplatforms with improved tumor accumulation represents a major trend in the current development of precision nanomedicine. To this end, we report herein the preparation of macrophage (MA)-laden gold nanoflowers (NFs) embedded with ultrasmall iron oxide nanoparticles (USIO NPs) for enhanced dual-mode computed tomography (CT) and magnetic resonance (MR) imaging of tumors. In this work, generation 5 poly(amidoamine) (G5 PAMAM) dendrimer-stabilized gold (Au) NPs were conjugated with sodium citrate-stabilized USIO NPs to form hybrid seed particles for the subsequent growth of Au nanoflowers (NFs). Afterwards, the remaining terminal amines of dendrimers were acetylated to form the dendrimer-stabilized Fe3O4/Au NFs (for short, Fe3O4/Au DSNFs). The acquired Fe3O4/Au DSNFs possess an average size around 90 nm, display a high r1 relaxivity (1.22 mM−1 s−1), and exhibit good colloidal stability and cytocompatibility. The created hybrid DSNFs can be loaded within MAs without producing any toxicity to the cells. Through the mediation of MAs with a tumor homing and immune evasion property, the Fe3O4/Au DSNFs can be delivered to tumors more efficiently than those without MAs after intravenous injection, thus significantly improving the MR/CT imaging performance of tumors. The developed MA-mediated delivery system may hold great promise for enhanced tumor delivery of other contrast agents or nanomedicines for precision cancer nanomedicine applications.


2016 ◽  
Vol 86 ◽  
pp. 1047-1053 ◽  
Author(s):  
Jingjing Li ◽  
Shan Wang ◽  
Chen Wu ◽  
Yue Dai ◽  
Pingfu Hou ◽  
...  

2018 ◽  
Vol 6 (41) ◽  
pp. 11178-11183 ◽  
Author(s):  
Yan Gao ◽  
Yao Cheng ◽  
Tao Hu ◽  
Zeliang Ji ◽  
Hang Lin ◽  
...  

This study highlights a highly sensitive dual-mode optical thermometer Pr3+:Gd2ZnTiO6 for thermal readings over a wide range of temperature.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Li Yang ◽  
Shengxiang Fu ◽  
Li Liu ◽  
Zhongyuan Cai ◽  
Chunchao Xia ◽  
...  

Abstract Magnetic resonance (MR)/optical dual-mode imaging with high sensitivity and high tissue resolution have attracted many attentions in biomedical applications. To avert aggregation-caused quenching of conventional fluorescence chromophores, an aggregation-induced emission molecule tetraphenylethylene (TPE)-conjugated amphiphilic polyethylenimine (PEI) covered superparamagnetic iron oxide (Alkyl-PEI-LAC-TPE/SPIO nanocomposites) was prepared as an MR/optical dual-mode probe. Alkyl-PEI-LAC-TPE/SPIO nanocomposites exhibited good fluorescence property and presented higher T2 relaxivity (352 Fe mM−1s−1) than a commercial contrast agent Feridex (120 Fe mM−1s−1) at 1.5 T. The alkylation degree of Alkyl-PEI-LAC-TPE effects the restriction of intramolecular rotation process of TPE. Reducing alkane chain grafting ratio aggravated the stack of TPE, increasing the fluorescence lifetime of Alkyl-PEI-LAC-TPE/SPIO nanocomposites. Alkyl-PEI-LAC-TPE/SPIO nanocomposites can effectively labelled HeLa cells and resulted in high fluorescence intensity and excellent MR imaging sensitivity. As an MR/optical imaging probe, Alkyl-PEI-LAC-TPE/SPIO nanocomposites may be used in biomedical imaging for certain applications.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Pawan Jolly ◽  
Marina R. Batistuti ◽  
Anna Miodek ◽  
Pavel Zhurauski ◽  
Marcelo Mulato ◽  
...  

Abstract MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.


2017 ◽  
Vol 5 (3) ◽  
pp. 418-422 ◽  
Author(s):  
Gurvinder Singh ◽  
Birgitte Hjelmeland McDonagh ◽  
Sjoerd Hak ◽  
Davide Peddis ◽  
Sulalit Bandopadhyay ◽  
...  

Herein, we report the synthesis of differently sized gadolinium oxide nanodisks and gadolinium doped iron oxide spherical and cubic nanoparticles through the thermal decomposition of an oleate precursor.


Sign in / Sign up

Export Citation Format

Share Document