scholarly journals A vital option for food security and greenhouse gases mitigation: planting elite super rice in double- to single-rice cropping fields in China

2021 ◽  
Vol 16 (9) ◽  
pp. 094038
Author(s):  
Dongli Fan ◽  
Yidan Fan ◽  
Zhan Tian ◽  
Xiubin Li ◽  
Min Jiang ◽  
...  
Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 45-71
Author(s):  
Dhurba Neupane ◽  
Pramila Adhikari ◽  
Dwarika Bhattarai ◽  
Birendra Rana ◽  
Zeeshan Ahmed ◽  
...  

Climate prediction models suggest that agricultural productivity will be significantly affected in the future. The expected rise in average global temperature due to the higher release of greenhouse gases (GHGs) into the atmosphere and increased depletion of water resources with enhanced climate variability will be a serious threat to world food security. Moreover, there is an increase in the frequency and severity of long-lasting drought events over 1/3rd of the global landmass and five times increase in water demand deficits during the 21st century. The top three cereals, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa), are the major and staple food crops of most people across the world. To meet the food demand of the ever-increasing population, which is expected to increase by over 9 billion by 2050, there is a dire need to increase cereal production by approximately 70%. However, we have observed a dramatic decrease in area of fertile and arable land to grow these crops. This trend is likely to increase in the future. Therefore, this review article provides an extensive review on recent and future projected area and production, the growth requirements and greenhouse gas emissions and global warming potential of the top three cereal crops, the effects of climate change on their yields, and the morphological, physiological, biochemical, and hormonal responses of plants to drought. We also discuss the potential strategies to tackle the effects of climate change and increase yields. These strategies include integrated conventional and modern molecular techniques and genomic approach, the implementation of agronomic best management (ABM) practices, and growing climate resilient cereal crops, such as millets. Millets are less resource-intensive crops and release a lower amount of greenhouse gases compared to other cereals. Therefore, millets can be the potential next-generation crops for research to explore the climate-resilient traits and use the information for the improvement of major cereals.


Author(s):  
Gordon Conway ◽  
Ousmane Badiane ◽  
Katrin Glatzel

This chapter explores threats to food security. It reveals many challenges arising from a range of threats external to the farm household, including severe biological threats from pests, disease, and weeds. Moreover, healthy, fertile soils are the cornerstone of food security and rural livelihoods, but African soils are degrading. Water is just as important for the productivity of plants, and lack of water leads to chronic and acute stress. Indeed, Africa is already battling the impacts of climate change. Rising temperatures and variable rainfall are increasing the exposure of smallholders to drought, famine, and disease. Agriculture is an important emitter of greenhouse gases (GHGs), not only carbon dioxide but also such powerful gases as methane and nitrous oxide. In addition, there are often severe socioeconomic challenges, including unstable and high prices of basic commodities. Finally, conflicts cause disruption to food security.


2022 ◽  
pp. 421-450
Author(s):  
Arti Mishra ◽  
Kanchan Vishwakarma ◽  
Piyush Malaviya ◽  
Nitin Kumar ◽  
Lorena Ruiz Pavón ◽  
...  

2021 ◽  
Vol 3 (9) ◽  
pp. 101-105
Author(s):  
V. Kh. STEPANYAN ◽  

This article examines the risks associated with the introduction of a carbon tax on domestic agricultural products. The professional community is increasingly raising issues of regulating the generation of greenhouse gases in various sectors of the national economy through the introduction of the so-called carbon tax, which implies the collection of additional fees in proportion to the amount of greenhouse gases produced per unit of production. If this measure of state regulation is applied, a change in the cost of meat due to an additional tax burden will lead to a significant decrease in its consumption.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maoxing Zhang ◽  
Yin Wang ◽  
Xi Chen ◽  
Feiyun Xu ◽  
Ming Ding ◽  
...  

AbstractNitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H+-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves. As a result, OSA1 overexpression in rice plants causes a 33% increase in grain yield and a 46% increase in N use efficiency overall. As PM H+-ATPase is highly conserved in plants, these findings indicate that the manipulation of PM H+-ATPase could cooperatively improve N and C utilisation, potentially providing a vital tool for food security and sustainable agriculture.


2002 ◽  
Vol 17 (S2) ◽  
pp. S20-S21
Author(s):  
Gregg Greenough ◽  
Ziad Abdeen ◽  
Bdour Dandies ◽  
Radwan Qasrawi

2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2005 ◽  
Author(s):  
Ariel-Ann Lyons ◽  
Connie Nelson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document