scholarly journals Climate change penalty and benefit on surface ozone: A global perspective based on CMIP6 earth system models

Author(s):  
Prodromos Zanis ◽  
Dimitris Akritidis ◽  
Steven Turnock ◽  
Vaishali Naik ◽  
Sophie Szopa ◽  
...  

Abstract This work presents an analysis of the effect of climate change on surface ozone discussing the related penalties and benefits around the globe from the global modeling perspective based on simulations with five CMIP6 (Coupled Model Intercomparison Project Phase 6) Earth System Models. As part of AerChemMIP (Aerosol Chemistry Model Intercomparison Project) all models conducted simulation experiments considering future climate (ssp370SST) and present-day climate (ssp370pdSST) under the same future emissions trajectory (SSP3-7.0). A multi-model global average climate change benefit on surface ozone of -0.96±0.07 ppbv oC-1 is calculated which is mainly linked to the dominating role of enhanced ozone destruction with higher water vapour abudances under a warmer climate. Over regions remote from pollution sources, there is a robust decline in mean surface ozone concentration on an annual basis as well as for boreal winter and summer varying spatially from -0.2 to -2 ppbv oC-1, with strongest decline over tropical oceanic regions. The implication is that over regions remote from pollution sources (except over the Arctic) there is a consistent climate change benefit for baseline ozone due to global warming. However, ozone increases over regions close to anthropogenic pollution sources or close to enhanced natural Biogenic Volatile Organic Compounds (BVOC) emission sources with a rate ranging regionally from 0.2 to 2 ppbv oC-1, implying a regional surface ozone penalty due to global warming. Overall, the future climate change enhances the efficiency of precursor emissions to generate surface ozone in polluted regions and thus the magnitude of this effect depends on the regional emission changes considered in this study within the SSP3_7.0 scenario. The comparison of the climate change impact effect on surface ozone versus the combined effect of climate and emission changes indicates the dominant role of precursor emission changes in projecting surface ozone concentrations under future climate change scenarios.

2016 ◽  
Vol 9 (10) ◽  
pp. 3685-3697 ◽  
Author(s):  
Nathan P. Gillett ◽  
Hideo Shiogama ◽  
Bernd Funke ◽  
Gabriele Hegerl ◽  
Reto Knutti ◽  
...  

Abstract. Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.


2016 ◽  
Author(s):  
Nathan P. Gillett ◽  
Hideo Shiogama ◽  
Bernd Funke ◽  
Gabriele Hegerl ◽  
Reto Knutti ◽  
...  

Abstract. Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally-constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include: new historical simulations of aerosols-only, stratospheric-ozone-only, CO2-only, solar-only and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing; future single forcing experiments, allowing observationally-constrained projections of future climate change; and an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.


2018 ◽  
Vol 10 (9) ◽  
pp. 3269 ◽  
Author(s):  
Chih-Chun Kung ◽  
Bruce McCarl

The world faces unprecedented threats from climate change and increasing variability, which severely impacts human society and the natural environment. To reduce future climate change and ensure our economies can grow in a sustainable way, sustainable energy development is considered to be an effective approach. In this context, sustainable energy development involves augmenting our energy supplies and managing demands in a fashion that societal energy needs are met with a minimal effect on greenhouse gas emissions and a nominal resultant contribution to future climate change. In this Special Issue, research papers focus on the role of sustainable energy development (while addressing important dimensions of sustainability), which mandates an inter-disciplinary perspective in all articles. We collected 11 such papers that have analyzed a broad array of topics related to bioenergy, wind power, industrial innovation, and climate change mitigation. These papers show the varied application of renewable energy and climate change energy responses, while providing meaningful decision-making information and policy implications.


2011 ◽  
Vol 116 (D22) ◽  
pp. n/a-n/a ◽  
Author(s):  
E. Katragkou ◽  
P. Zanis ◽  
I. Kioutsioukis ◽  
I. Tegoulias ◽  
D. Melas ◽  
...  

2020 ◽  
pp. 12-17
Author(s):  
Sylvia Reynolds

Recycling is often included in lists of things that can be done to mitigate climate change. Recycling is not a “bad’ thing, but recycling alone is an insufficient response to the complex problems posed by climate change. This article takes the reader through the journey of an experienced teacher who began with a hopeful vision to include climate change in her school’s programme, meandered through a myriad distracting recycling schemes, until she reached a deeper understanding of the barriers to climate change education and the role of emotions in these programmes. The article concludes with her three key lessons for future climate change curriculum projects.


2007 ◽  
Vol 7 (4) ◽  
pp. 9867-9897 ◽  
Author(s):  
P. N. Racherla ◽  
P. J. Adams

Abstract. We examined the response of surface ozone to future climate change over the eastern United States by performing simulations corresponding to present (1990s) and future (2050s) climates using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols. A future climate has been imposed using ocean boundary conditions corresponding to the IPCC SRES A2 scenario for the 2050 s decade, resulting in an increase in the global annual-average surface air temperature by 1.7°C, with a 1.4°C increase over the surface layer of the eastern United States. Present-day anthropogenic emissions and CO2/CH4 mixing ratios have been used in both simulations while climate-sensitive natural emissions were allowed to vary with the simulated climate. There is practically zero change in the spatiotemporally averaged ozone mixing ratios predicted over the eastern United States. However, the severity and frequency of ozone episodes over the eastern United States increased due to future climate change, primarily as a result of increased ozone chemical production due to increased natural isoprene emissions. The 95th percentile ozone mixing ratio increased by 5 ppbv and the largest frequency increase occured in the 80–90 ppbv range. The most substantial and statistically significant (p-value <0.05) increases in episode frequency occurred over the southeast and midatlantic United States, largely as a result of 20% higher annual-average natural isoprene emissions. Increased chemical production and shorter average lifetime are consistent features of the predicted seasonal surface ozone response, with the former's magnitude for a location largely a function of increased natural isoprene emissions, and the latter largely due to faster dry deposition removal rates. Future climate change is also predicted to lengthen the ozone season over the eastern United States to include late spring and early fall. Significant interannual variability is observed in the frequency of ozone episodes and we find that it is necessary to utilize 5 years or more of simulation data in order to separate the effects of interannual variability and climate change on ozone episodes.


2021 ◽  
Author(s):  
Andrew Hugh MacDougall

Abstract. Zero Emissions Commitment (ZEC), the expected change in global temperature following the cessation of CO2 emissions has recently been assessed by the Zero Emissions Commitment Model Intercomparison Project (ZECMIP). ZECMIP concluded that the component of ZEC from CO2 emissions will likely be close to zero in the decades following the cessation of emissions. However, of the 18 Earth system models that participated in ZECMIP only two included a representation of the permafrost carbon feedback to climate change. To better assess the potential impact of permafrost carbon decay on ZEC a series of perturbed parameter experiments are here conducted with an Earth system model of intermediate complexity. The experiment suggest that the permafrost carbon cycle feedback will directly add 0.06 [0.02 to 0.14] °C to the benchmark ZEC value assesses 50 years after 1000 PgC of CO2 has been emitted to the atmosphere. An additional 0.04 [0 to 0.06] °C is likely to been added relative to the benchmark ZEC value from the thaw-lag effect unaccounted for in the ZECMIP experiment design. Overall we assess that the permafrost carbon feedback is unlikely to change the assessment that ZEC is close to zero on decadal timescales, however the feedback is expected to become more important over the coming centuries.


2016 ◽  
Vol 12 (3) ◽  
pp. 663-675 ◽  
Author(s):  
Alan M. Haywood ◽  
Harry J. Dowsett ◽  
Aisling M. Dolan ◽  
David Rowley ◽  
Ayako Abe-Ouchi ◽  
...  

Abstract. The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, as well as their potential relevance in the context of future climate change. PlioMIP examines the consistency of model predictions in simulating Pliocene climate and their ability to reproduce climate signals preserved by geological climate archives. Here we provide a description of the aim and objectives of the next phase of the model intercomparison project (PlioMIP Phase 2), and we present the experimental design and boundary conditions that will be utilized for climate model experiments in Phase 2. Following on from PlioMIP Phase 1, Phase 2 will continue to be a mechanism for sampling structural uncertainty within climate models. However, Phase 1 demonstrated the requirement to better understand boundary condition uncertainties as well as uncertainty in the methodologies used for data–model comparison. Therefore, our strategy for Phase 2 is to utilize state-of-the-art boundary conditions that have emerged over the last 5 years. These include a new palaeogeographic reconstruction, detailing ocean bathymetry and land–ice surface topography. The ice surface topography is built upon the lessons learned from offline ice sheet modelling studies. Land surface cover has been enhanced by recent additions of Pliocene soils and lakes. Atmospheric reconstructions of palaeo-CO2 are emerging on orbital timescales, and these are also incorporated into PlioMIP Phase 2. New records of surface and sea surface temperature change are being produced that will be more temporally consistent with the boundary conditions and forcings used within models. Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.


Sign in / Sign up

Export Citation Format

Share Document