scholarly journals Influence of middle phase emulsion and surfactant concentration to oil recovery using SLS surfactant synthesized from bagasse

Author(s):  
R Setiati ◽  
S Siregar ◽  
T Marhaendrajana ◽  
D Wahyuningrum
Author(s):  
Arinda Ristawati ◽  
Sugiatmo Kasmungin ◽  
Rini Setiati

<p class="NoSpacing1"><em>Surfactant flooding may increase oil recovery by lowering interfacial tension between oil and water. Bagasse is one of the organic materials which contain fairly high lignin, where lignin is the basic substance of making Natrium Lignosulfonate (NaLS) Surfactant. In this research, bagasse based surfactant was applied for surfactant flooding. The research was divided into two sections, namely: phase behavior test and NaLS Surfactant flooding where the water contained 70,000 ppm NaCl. Two surfactant concentrations which were used were 0.75% and 1.5% NaLS surfactant. Phase behavior tests were carried out to find the middle phase emulsion formation. Based on phase behavior test results, the percentage of emulsion volume for 0.75% and 1.5% NaLS is 13.75% and 8.75%, respectively. NaLS surfactant flooding was performed for to obtain the best recovery factor. FTIR equipment used determine recovery factor. The optimum condition was obtained at 0.75% NaLS surfactant concentration where the recovery factor was 4.4%.</em><em></em></p>


1977 ◽  
Vol 17 (02) ◽  
pp. 129-139 ◽  
Author(s):  
Robert N. Healy ◽  
Ronald L. Reed

Abstract Economical microemulsion flooding inevitably involves microemulsion phases that are immiscible with water, oil, or both. Oil recovery is largely affected by displacement efficiency in the immiscible regime. Therefore, it is pertinent to study this immiscible aspect in relation to variables that affect phase behavior and interfacial tension between phases. This is accomplished through core flooding experiments wherein microemulsions immiscible with oil and/or water are injected to achieve enhanced oil recovery. One advantage of such an immiscible microemulsion flood is that surfactant concentration can be small and slug size large, thereby reducing deleterious effects of reservoir heterogeneity; a disadvantage is that the temporary high oil recovery accompanying locally miscible displacement before slug breakdown is reduced. Final oil saturation remaining after lower, middle, and upper-phase microemulsion floods is studied as a function of salinity, cosolvent, temperature, and surfactant structure; and results are related to interfacial tension, phase behavior and solubilization parameters. A conclusion is that immiscible microemulsion flooding is an attractive alternative to conventional microemulsion processes. Oil recovery obtained from microemulsion slugs is correlated with capillary number based on what is called the controlling interracial tension. Physically, this means the least effective of the Physically, this means the least effective of the displacement processes at the slug front or rear determines the flood outcome. Finally, a screening procedure is developed that is useful for either immiscible or conventional microemulsion floods and that can reduce the number of core floods required to estimate oil recovery potential for a candidate microemulsion system. potential for a candidate microemulsion system Introduction This is the fourth in a sequence of papers dealing with miscible and immiscible aspects of microemulsion flooding. The first of these papers identified micellar structures above the binodal curve and showed how the region of miscibility could be maximized at the expense of the multiphase region, thereby prolonging locally miscible displacement. This was accomplished by varying salinity, and the notion of optimal salinity was introduced as that which minimized the extent of the multiphase region. Interfacial tensions within the multiphase region were measured and found to vary nearly three orders of magnitude, depending on WOR and surfactant concentration. Careful isothermal pre-equilibration of bulk phases was a requisite to all interfacial tension measurements. The second paper emphasized core flooding behavior and distinguished locally miscible displacement before slug breakdown, from immiscible displacement occurring thereafter. Fractional oil flow was correlated with capillary number and it was found that an effective immiscible displacement cannot be distinguished from the locally miscible case. Further, during an effective flood, the greater part of the oil was recovered during the immiscible regime. Finally, it was shown that micellar structure within the miscible region is not of itself an important variable. Having determined that the immiscible aspect of a microemulsion flood was important and dominant, the third paper dealt extensively with the multiphase region. Microemulsions were classified as lower-phase (1), upper-phase, (u), or middle-phase (m) in equilibrium with excess oil, excess water, or both excess oil and water, respectively. Transitions among these phases were studied and systematized as functions of a number of variables. Solubilization parameters for oil and water in microemulsions were introduced and shown to correlate interfacial tensions. The middle-phase was identified as particularly significant because microemulsion/excess-oil and microemulsion/ excess-water tensions could be made very low simultaneously. In this paper, the sequence is continued by introducing the notion of an immiscible microemulsion flood as one having an injection composition in the neighborhood of the multiphase boundary. SPEJ P. 129


1978 ◽  
Vol 18 (04) ◽  
pp. 242-252 ◽  
Author(s):  
W.H. Wade ◽  
James C. Morgan ◽  
R.S. Schechter ◽  
J.K. Jacobson ◽  
J.L. Salager

Abstract The conditions necessary for optimum low tension and phase behavior at high surfactant concentrations are compared with those required at low surfactant concentrations, where solubilization effects are not usually visible. Major differences in tension behavior between the high and low concentration systems may be observed when the surfactant used contains a broad spectrum of molecular species, or if a higher molecular weight alcohol is present, but not otherwise in the systems studied. We compared the effects of a number of aliphatic alcohols on tension with phase behavior. An explanation of these results, and also of other observed parameter dependences, is proposed in terms of changes in surfactant chemical potential. Surfactant partitioning data is presented that supports this concept. Introduction Taber and Melrose and Brandner established that tertiary oil recovery by an immiscible flooding process should be possible at low capillary process should be possible at low capillary numbers. In practice, the required capillary number, which is a measure of the ratio of viscous to capillary forces governing displacement of trapped oil, may be achieved by lowering the oil/water interfacial tension to about 10(-3) dyne/cm, or less. Subsequent research has identified a number of surfactants that give tensions of this order with crude oils and hydrocarbon equivalents. Interfacial tension studies tended to fall into two groups. Work at low surfactant concentrations, typically 0.7 to 2 g/L, has established that a crude oil may be assigned an equivalent alkane carbon number. Using pure alkanes instead of crude oil has helped the study of system parameters affecting low tension behavior. Important parameters examined include surfactant molecular structure, and electrolyte concentration, surfactant concentration, surfactant molecular weight, and temperature. At higher surfactant concentrations, interfacial tension has been linked to the phase behavior of equilibrated systems. When an aqueous phase containing surfactant (typically 30 g/L), electrolyte, and low molecular weight alcohol is equilibrated with a hydrocarbon, the surfactant may partition largely into the oil phase, into the aqueous phase, or it may be included in a third (middle) phase containing both water and hydrocarbon. Low interfacial tensions occur when the solubilization of the surfactant-free phase (or phases) into the surfactant-containing phase is maximized. Maximum solubilization and minimum tensions have been shown to be associated with the formation of a middle phase. Both the high and low surfactant concentration studies have practical importance because even though a chemical flood starts at high concentration, degradation of the injected surfactant slug will move the system toward lower concentrations. This study investigates the relationship between tension minima found with low concentration systems, and low tensions found with equivalent systems at higher surfactants concentrations, particularly those in which third-phase formation occurs. Many of the systems studied here contain a low molecular weight alcohol, as do most surfactant systems described in the literature or proposed for actual oil recovery. Alcohol originally was added to surfactant systems to help surfactant solubility, but can affect tensions obtained with alkanes, and with refined oil. Few systematic studies of the influence of alcohol on tension behavior exist. Puerto and Gale noted that increasing the alcohol Puerto and Gale noted that increasing the alcohol molecular weight decreases the optimum salinity for maximum solubilization and lowest tensions. The same conclusions were reached by Hsieh and Shah, who also noted that branched alcohols had higher optimum salinities than straight-chain alcohols of the same molecular weight. Jones and Dreher reported equivalent solubilization results with various straight- and branched-chain alcohols. In this study, we fix the salinity of each system and instead vary the molecule; weight of the hydrocarbon phase. SPEJ P. 242


2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


2021 ◽  
pp. 91-107
Author(s):  
E. A. Turnaeva ◽  
E. A. Sidorovskaya ◽  
D. S. Adakhovskij ◽  
E. V. Kikireva ◽  
N. Yu. Tret'yakov ◽  
...  

Enhanced oil recovery in mature fields can be implemented using chemical flooding with the addition of surfactants using surfactant-polymer (SP) or alkaline-surfactant-polymer (ASP) flooding. Chemical flooding design is implemented taking into account reservoir conditions and composition of reservoir fluids. The surfactant in the oil-displacing formulation allows changing the rock wettability, reducing the interfacial tension, increasing the capillary number, and forming an oil emulsion, which provides a significant increase in the efficiency of oil displacement. The article is devoted with a comprehensive study of the formed emulsion phase as a stage of laboratory selection of surfactant for SP or ASP composition. In this work, the influence of aqueous phase salinity level and the surfactant concentration in the displacing solution on the characteristics of the resulting emulsion was studied. It was shown that, according to the characteristics of the emulsion, it is possible to determine the area of optimal salinity and the range of surfactant concentrations that provide increased oil displacement. The data received show the possibility of predicting the area of effectiveness of ASP and SP formulations based on the characteristics of the resulting emulsion.


1981 ◽  
Vol 21 (04) ◽  
pp. 500-512 ◽  
Author(s):  
K.O. Meyers ◽  
S.J. Salter

Abstract Static adsorption measurements of petroleum sulfonates on crushed Bell Creek and Berea cores were made using fluids with the same active surfactant concentration but varying brine/oil mass ratios. The salinity of the brine was chosen such that a significant three-phase region existed in the oil/brine/surfactant/alcohol system. The surfactant adsorption was found to be independent of the structural and compositions differences among the fluids. A series of oil recovery tests in which middle-phase microemulsions were injected into waterflooded cores also were performed. The cores used in these tests had been treated to remove divalent ions accessible to fluid flow. Microemulsion slugs (1.75 to 146% PV) of equal active surfactant concentration but differing brine/oil mass ratios were injected. The total surfactant retention for this system was also found to be independent of the brine/oil mass ratio. Introduction Control of sulfonate loss is one of the single most important factors in determining the success or failure of a surfactant flooding process. In a typical surfactant flood, sulfonate costs are frequently half or more of the total project cost. As a result, this area has been studied frequently. Many authors have studied detailed adsorption mechanisms - mostly from aqueous solutions and at relatively low concentrations. A recent thesis from the U. of Texas1 and its references provide an excellent description of this type of work. The petroleum industry literature deals more with evaluating the controlling factors in actual flood implementation. Surfactant loss has been broken down into adsorption, precipitation, and phase trapping. The effects of sacrificial agents, sulfonate fractionation, divalent ions, and salinity gradients all have been investigated. Since it is not the purpose of this paper to provide a review of the literature, we have attempted only to summarize some of this literature in the form of a table (see Table 1). Surfactant retention data have been presented in terms of a wide variety of units. These fall into two basic categories: molecules per unit area, which is indicative of surface coverage, and mass per unit of pore volume, which is indicative of surfactant consumption by the reservoir. We have chosen to express both our data and all of the data in Table 1 as microequivalents per square meter (µeq/m2) and milligrams active surfactant per milliliter of pore volume (mg AS/mL PV). In many cases this involved making assumptions as to rock density, porosity, surfactant equivalent weight, etc.; however, it has the advantage of allowing direct comparison of results.


1981 ◽  
Vol 21 (05) ◽  
pp. 593-602 ◽  
Author(s):  
E. Ruckenstein

Abstract From a consideration of the thermodynamic stability of microemulsions, one can establish a relation between the interfacial tension y at the surface of the globules and the derivative, with respect to their radius re, of the entropy of dispersion of the globules in the continuous medium. Expressions for the entropy of dispersion are used to show that gamma is approximately proportional to kT/r2e, where k is Boltzmann's constant and T is the absolute temperature. Since the environment of the interface between the microemulsion and the excess dispersed medium is expected to be similar to that at the surface of the globules, these expressions are used to evaluate the interfacial tension between microemulsion and excess dispersed medium. Values between 10 and 10 dyne/cm that decrease with increasing radii are obtained, in agreement with the range found experimentally by various authors. The origin of the very small interfacial tensions rests ultimately in the adsorption of surfactant and cosurfactant on the interface between phases. The effect on the interfacial tension of fluctuations from one type of microemulsion to the other, which may occur near the phase inversion point, is discussed. Introduction The system composed of oil, water, surfactant, cosurfactant, and salt exhibits interesting phase equilibria. For sufficiently large concentrations of surfactant, a single phase can be formed either as a microemulsion or as a liquid crystal. In contrast, at moderate surfactant concentrations, two or three phases can coexist. For moderate amounts of salt (NaCl), an oil phase is in equilibrium with a water-continuous microemulsion, whereas for high salinity, an oil-continuous microemulsion coexists with a water phase. At intermediate salinity, a middle phase (probably a microemulsion) composed of oil, water, surfactants, and salt forms between excess water and oil phases. Extremely low interfacial tensions are found between the different phases, with the lowest occurring in the three-phase region. These systems have attracted attention because of their possible application to tertiary oil recovery. It has been shown that the displacement of oil is most effective at very low interfacial tensions.Microemulsions have been investigated with various experimental techniques, such as low-angle X-ray diffraction, light scattering, ultracentrifugation, electron microscopy, and viscosity measurements. These have shown that the dispersed phase consists of spherical droplets almost uniform in size. While it is reasonable to assume that the microemulsions coexisting with excess oil or water contain spherical globules of the dispersed medium, the structure of the middle-phase microemulsion is more complex. Experimental evidence obtained by means of ultracentrifugation indicates, however, that at the lower end of salinity the middle phase contains globules of oil in water, while at the higher end the middle phase is oil continuous. A phase inversion must occur, at an intermediate salinity, from a water-continuous to an oil-continuous microemulsion. The free energies of the two kinds of microemulsions are equal at the inversion point. Since their free energy of formation from the individual components is very small, small fluctuations, either of thermal origin or due to external perturbations, may produce changes from one type to the other in the vicinity of the inversion point. As a consequence, near this point, it is possible that the middle phase is composed of a constantly changing mosaic of regions of both kinds of microemulsions. SPEJ P. 593^


1983 ◽  
Vol 23 (03) ◽  
pp. 486-500 ◽  
Author(s):  
G.J. Hirasaki ◽  
H.R. van Domselaar ◽  
R.C. Nelson

Abstract Salinity design goals are to keep as much surfactant as possible in the active region and to minimize surfactant possible in the active region and to minimize surfactant retention. Achieving these is complicated becausecompositions change as a result of dispersion, chromatographic separation of components distributed among two or more phases, and retention by adsorption onto rock and/or absorption in a trapped phase-.in the presence of divalent ions, optimal salinity is not constant but a function of surfactant concentration and calcium/sodium ratio: andthe changing composition of a system strongly influences transport of the components. A one-dimensional (ID) six-component finite-difference simulator was used to compare a salinity gradient design with a constant salinity design. Numerical dispersion was used to evaluate the effects of dispersive mixing. These simulations show that, with a salinity gradient, change of phase behavior with salinity can be used to advantage both to keep surfactant in the active region and to minimize retention. By contrast, under some conditions with a constant salinity design. it is possible to have early surfactant breakthrough and/or large surfactant retention. Other experiments conducted showed that high salinity does retard surfactant, and, if the drive has high salinity. a great amount of surfactant retention can result. The design that produced the best recovery had the water flood brine over optimum and the drive under optimum; the peak surfactant concentration occurred in the active region and oil production ceased at the same point. Introduction The phase behavior of surfactant/oil/brine systems for different salinities is shown in Fig. 1. Low salinities. called "underoptimum" or "Type II(−)" phase behavior, are shown at the top of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the aqueous phase. predominantly into the aqueous phase. High salinities, called "overoptimum" or "Type II(+)" phase behavior, are shown at the bottom of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the oleic phase. When the oleic phase predominantly into the oleic phase. When the oleic phase has a low oil concentration, the oil is said to be "swollen" by the surfactant and brine. At moderate salinities, the system can have up to three phases and is called "Type III." This is illustrated in the phases and is called "Type III." This is illustrated in the middle of Fig. 1. The salinity at which the middle phase has a WOR of unity is called "optimal salinity" because the lowest interfacial tensions (IFT's) usually occur near this salinity. As salinity increases, there is a steady progression from Type II(−) to Type III to Type II(+) phase behavior. The middle-phase composition moves from the brine side of the diagram to the oil side. The two-phase regions that correspond to the Type II(−) and Type II( +) systems can be seen above the three-phase region in Fig. 1.


Author(s):  
Anan Tantianon ◽  
Falan Srisuriyachai

Injection of surfactant into waterflooded reservoir which has considerably high water saturation may cause a reduction in surfactant efficiency by means of surfactant dilution and adsorption. Therefore, to maintain expected lowest interfacial tension (IFT) condition, large amount of surfactant, which leads to higher cost, is inevitable. Several studies have observed that reduction in surfactant concentration slug at the late time can cause a shift in surface equilibrium, resulting in desorption of retained active surfactant agents and therefore, it is possible to obtain benefit from this phenomenon to achieve longer period of the lowest IFT condition while maintaining the amount of surfactant used. Hence, this study aims to evaluate effects of two-slug surfactant flooding compared to single-slug while maintaining amount of surfactant used constant in waterflooded reservoir. The performance is evaluated based on additional oil recovery using STAR® reservoir simulation program. Simulated results indicated that two-slug surfactant injection yields better oil recovery than conventional single-slug surfactant flooding due to benefit of sacrificial adsorption and desorption process of active surfactant. Selecting type of two-slug surfactant flooding strategy would depend on surfactant concentration of single-slug which is chosen for modification; whereas, the selection of magnitude of concentration contrast between two slugs would depend on placement of surfactant mass ratio.


Sign in / Sign up

Export Citation Format

Share Document