scholarly journals Indoor Rheological Test and Creep Model Analysis of Soft Soil in Qingyi River region in Wuhu Anhui

Author(s):  
Xinming Zhao ◽  
Qianwen Wang ◽  
Yifei Gao ◽  
Tao Yang ◽  
Lichao He ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4146
Author(s):  
Xunli Jiang ◽  
Zhiyi Huang ◽  
Xue Luo

Soft soils are usually treated to mitigate their engineering problems, such as excessive deformation, and stabilization is one of most popular treatments. Although there are many creep models to characterize the deformation behaviors of soil, there still exist demands for a balance between model accuracy and practical application. Therefore, this paper aims at developing a Mechanistic-Empirical creep model (MEC) for unsaturated soft and stabilized soils. The model considers the stress dependence and incorporates moisture sensitivity using matric suction and shear strength parameters. This formulation is intended to predict the soil creep deformation under arbitrary water content and arbitrary stress conditions. The results show that the MEC model is in good agreement with the experimental data with very high R-squared values. In addition, the model is compared with the other classical creep models for unsaturated soils. While the classical creep models require a different set of parameters when the water content is changed, the MEC model only needs one set of parameters for different stress levels and moisture conditions, which provides significant facilitation for implementation. Finally, a finite element simulation analysis of subgrade soil foundation is performed for different loading levels and moisture conditions. The MEC model is utilized to predict the creep behavior of subgrade soils. Under the same load and moisture level, the deformation of soft soil is largest, followed by lime soil and RHA–lime-stabilized soil, respectively.


2019 ◽  
Vol 7 (4) ◽  
pp. 49-56
Author(s):  
Zaven Ter-Martirosyan ◽  
Armen Ter-martirosyan ◽  
Valery DEMYANENKO

The paper provides a quantitative assessment of the deflected mode of foundation stratum of finite width foundation, in the compressible thickness of which there is a slack clay soil layer. A number of criteria for assessing the possibility or impossibility of extruding a slack layer depending on its strength and rheological properties, as well as the relative thickness of the layer to its length (h/l) and the relative depth of the layer (h/d) have been given. Closed analytical solutions are given to determine the rate of Foundation precipitation depending on the rate of extrusion of the weak layer, including taking into account the damped and undamped creep. The analytical solutions in the article are supported by the graphical part made with the help of the Mathcad program. Plots of changes in shear stresses in the layer along the x axis at different distances from the axis and at different values 0, contours of horizontal displacement velocities in the weak layer at different distances from the x axis, plots of horizontal displacement velocities in the middle of the weak layer and plots of horizontal displacement velocities in the weak layer at different distances from the x axis are given. As a calculation model for describing the creep of a slack layer, rheological ones of the soil using power and hyperbolic functions and their modifications have been considered. In addition, most modern rheological models that take into account soil hardening during creep have been considered. Based on these models, the problem is solved by means analytical and numerical methods using the Mathcad PC and the PLAXIS PC according to the Soft Soil Creep model. The graphical part shows the isofields of horizontal displacements for 300 days and 600 days and the corresponding contours of horizontal displacements.


2018 ◽  
Vol 251 ◽  
pp. 02035
Author(s):  
Armen Ter-Martirosyan ◽  
Vitalii Sidorov ◽  
Lubov Ermoshina

At present, numerical methods of calculations, which are implemented in a large number of software complexes, are widely used in geotechnical practice and the definition of input parameters of the ground is very important and necessary to reflect the real work of the foundation of geotechnical structures [1-4]. There are often cases when the results obtained during laboratory tests of soils are not accepted by software complexes, errors are given, recommendations are proposed for changing the parameters in the direction of increasing or decreasing. In connection with these problems, the question arose about the need to optimize soil parameters obtained as a result of laboratory tests to compare and correct these parameters, based on the degree of approximation of model tests with laboratory tests [5]. Optimization of soil parameters can be carried out in the subroutine Soil test, incorporated in the PLAXIS geotechnical software [6]. Using the Soil test, the triaxial and compression tests are simulated based on the input parameters of the soil and the initial test data. The purpose of this study was to describe the methodology for optimizing the parameters of the Hardening Soil model and the Soft Soil Creep model using the PLAXIS 3D software geotechnical complex, as well as a comparative analysis of the results of laboratory soil tests with modeling results in software complex.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Huang ◽  
Kejun Wen ◽  
Xiaojia Deng ◽  
Junjie Li ◽  
Zhijian Jiang ◽  
...  

Presented in this paper is a study on the lateral unloading creep tests under different excess pore water pressures. The marine sedimentary soft soil in Shenzhen, China, was selected in this study. The results show that the excess pore water pressure plays a significant role in enhancing the unloading creep of soft soil. Higher excess pore water pressure brings more obvious creep deformation of soft soil and lower ultimate failure load. Meanwhile, the viscoelastic and the viscoplastic modulus of soft soil were found to exponentially decline with creep time. A modified merchant model and a combined model of the modified merchant model and plastic elements are used to simulate the viscoelastic and the viscoplastic deformation, respectively. Therefore, a lateral unloading creep model of soft soil is developed based on the modified merchant model. The accuracy and applicability of this model were verified through identifying the parameters in the model. Research results are of particular significance to the numerical simulation of underground space excavation in soft soil areas which considers the effects of excess pore water pressure.


2006 ◽  
Vol 43 (2) ◽  
pp. 134-154 ◽  
Author(s):  
C T Gnanendran ◽  
G Manivannan ◽  
S -CR Lo

The predictability of the behaviour of an embankment constructed on a soft soil with three types of fully coupled finite element analysis models; namely a rate-formulated elasto-viscoplastic, a creep-formulated elasto-viscoplastic, and modified Cam clay (MCC) elastoplastic material model for the foundation soil is examined in this paper. The well documented geotextile reinforced Sackville test embankment was chosen for analyses using the three finite element models. Details of the analyses carried out using the three models and the results are discussed in comparison with field performance. All three models were found to be capable of predicting the behaviour of this embankment reasonably well. The creep model gave slightly better overall predictions of the behaviour compared to the rate and MCC models and therefore is considered to be better for predicting the time-dependent behaviour of this embankment. However, it requires the coefficient of secondary compression of the foundation soft soil as an additional input parameter and consumes more computing resources and time. In contrast, this study suggests that the MCC model is also capable of giving reasonably good overall predictions using less computing resources and time and therefore is sufficient for predicting the performance of embankments on soft soils.Key words: embankment, soft soil, geosynthetic reinforcement, analysis, viscoplasticity, creep.


2015 ◽  
Vol 22 (s1) ◽  
pp. 35-42
Author(s):  
Zhao Jie ◽  
Zhou Tongling ◽  
Wang Gui-xuan

Abstract In order to analyze the influential factors of soft foundation settlement in a marine reclamation land project, the consolidation settlement and pore pressure dissipation of the entire area are numerically simulated using Soft-Soil- Creep Model, in which the PLAXIS finite element software for professional geotechnical engineering is applied and empirical data of Japanese Kansai’s airport project are used. Moreover, the figures of settlement and pore pressure results in the different basic period are drawn, and the corresponding analysis conclusions are ob-tained based on the comparison among the results from the computational parameters of depth. In addition,, the influence rules of various parameters on settlement results is concluded through running the parameter sensitivity analysis in Soft-Soil-Creep Model, and the experience and conclusions can be for reference in the design and con-struction of similar large-scale marine reclamation land project. Also the empirical value method of the creep index has not been applied widely. Further research needs to be done.


2012 ◽  
Vol 594-597 ◽  
pp. 596-599
Author(s):  
Song Wei ◽  
Qing Yu Zhang ◽  
Jian Guo Liu ◽  
Liang Hui Xu ◽  
Qing Chen

The general soft soil widely exists in coastal, riverside and lakeside areas. Large area along the Yangtze River in Anhui Province is also the distribution of soft soil. The existence of soft soil has some degree effect on the project construction. According to the laboratory tests, the basic properties of the soft soil in these areas were researched. Based on test results, and compared with the soft soil of other areas, results show that the soft soil of Anhui along the Yangtze River has its own special nature. It include that, compared with other areas soft soil, the soil void ratio and compression coefficient are a little smaller; the consolidation coefficient, permeability coefficient and shear strength parameters are a little bigger; the silt content is above normal. The results and further understanding of soft soil basic nature may have certain guiding significance to construction projects along the Yangtze River region.


Vestnik MGSU ◽  
2020 ◽  
pp. 776-788
Author(s):  
Vadim G. Ofrikhter ◽  
Galina M. Batrakova ◽  
Natalia N. Sliusar

Introduction. The process of municipal solid waste (further MSW) generation is inextricably linked with the life of humanity. Every day each person generates some, a small amount of garbage. As a result millions of tons of MSW are generated daily in the world which are unsuitable for further use and require disposal. There are various ways of handling MSW including their treatment, recycling and disposal. In Russian Federation the vast majority of MSW are currently located on the specially equipped facilities –– waste landfills. To date the most common waste management strategy remains their placement in a landfill. Waste landfills are arrays of stored waste and are special engineering structures designed for the safe isolation of their contents from the environment. Landfill includes gas exhaust and leachate drainage systems, liner and cover systems. The main component of this structure is waste itself. Mechanical stability of landfills should be provided at all stages of waste storage as well as after it complete filling to designed capacity and at post-closure stage. As the result of deformation of unstable waste, all landfill systems can be destroyed up to the collapse of garbage array leading to the significant environmental and other consequences. One of the most common problems leading to the various incidents at landfills is an incorrect assessment of their stability. MSW landfill is a complex multiphase system in which various interacting processes occur simultaneously. The main factor in the calculation and design of landfills is the forecast of their settlements. Studies by many authors have established that biological decomposition has a significant impact on the properties of MSW after which the waste is considered as the landfill soil with a particle size of up to 20 mm. Materials and methods. The paper presents the methodology and the results of numerical modeling of stress-strain state of the designed object “Waste Landfill”. The facility is an array of municipal solid waste of 38 meters high. Waste is stacked in the layers of 1.75 m thick. Each waste layer is covered by the loam cover of 0.25 m thick. Stress-strain state of municipal solid waste including biological creep was modelled using well-known “Soft-Soil-Creep model” (SSC-model). Results. The results of numerical simulation of stress-strain state of the waste pile at all stages of the filling and in the post-closure period are presented. An assessment of the increase in the capacity of the landfill due to the compaction and biological creep has been performed. Stability analysis of the landfill and potential failure mechanisms at different stages of filling and operation are presented. Conclusions. Numerical modeling of stress-strain state of the MSW array using the “Soft-Soil-Creep model” allows to analyze the stability of the waste pile at any stage of landfill filling and evaluate the increase in landfill capacity due to the waste settlement taking into account the mechanical creep and biocompression during layer-by-layer filling.


Sign in / Sign up

Export Citation Format

Share Document