scholarly journals Antimicrobial activity of moringa leaf (Moringa oleifera L.) extract against the growth of Staphylococcus epidermidis

Author(s):  
Ervianingsih ◽  
M Mursyid ◽  
R N Annisa ◽  
I Zahran ◽  
J Langkong ◽  
...  
2018 ◽  
Vol 179 ◽  
pp. 273-281 ◽  
Author(s):  
Andrea Amato ◽  
Luisa Maria Migneco ◽  
Andrea Martinelli ◽  
Loris Pietrelli ◽  
Antonella Piozzi ◽  
...  

2017 ◽  
Vol 7 (4) ◽  
pp. 420 ◽  
Author(s):  
Adriana Favaretto ◽  
Fabiana Tonial ◽  
Charise Dallazem Bertol ◽  
Simone Meredith Scheffer-Basso

This study aimed to evaluate tough lovegrass leaf and root extracts antimicrobial activity. The extracts (plant material: solvent, 1:10) were prepared by maceration with methanol:water (1:1) during ten days followed by a concentration in a rotary evaporator under reduced pressure. The extracts were resuspended in water containing 1% of dimethylsulfoxide (DMSO) to obtain a final concentration of 100 mg/mL and then filtered through a sterilizing membrane with 0.22μm. The antibacterial activity of the leaf and root extracts were evaluated against pathogenic and phytopathogenic bacteria by agar well diffusion and microdilution broth methods for the minimum inhibitory concentrations (MIC) determination. The antifungal activity of tough lovegrass leaf and root extracts were evaluated by micelial growth inhibition and conidial germination inhibition. The extracts presented low antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, and Xanthomonas translucens, but the leaf extracts presented significant antifungal activity against the phytopathogenic fungus Drechslera tritici-repentis. The results support the continuity of the study in improving the effectiveness of the active extract for a possible use in pharmacology and agronomy and in attempting to determine the probable active antimicrobial compound.


2020 ◽  
Vol 12 (1) ◽  
pp. 128-132
Author(s):  
I.A. Raubilu ◽  
U. Isah ◽  
M.A. Ahmad

Moringa oleifera Lam. (Family Moringaceae) is well – known for its various medicinal properties. It grows wild in the tropical and subtropical areas of Asia, Africa and the Middle East. In Nigeria, Moringa oleifera trees are planted at a large scale especially in the northern part of the country. It has been widely used in the treatment of certain diseases as a traditional medicinal herb. Antimicrobial activity is the most studied property of Moringa oleifera. Many studies have shown that nearly all types of Moringa oleifera tissues exhibit antimicrobial activity including antibacterial, antifungal, antiviral and anti parasitic property. This review describes progress on research conducted to understand the antimicrobial activity of Moringa oleifera and discusses the potential use of Moringa oleifera in the control of pathogenic microbes. Key words: Antimicrobial activity; Moringa oleifera; pathogenic microbes, control.  


2016 ◽  
Vol 78 (5-5) ◽  
Author(s):  
Panjamaphon Chanthasena ◽  
Nawarat Nantapong

In this study, an antimicrobial-producing Actinomycetes PJ90 was isolated from forest soil in Suranaree University of Technology, Nakhon Ratchasima, Thailand. The morphological characteristics and 16S rRNA gene analysis revealed that isolate PJ90 could be classified as Streptomyces triostinicus. The isolate PJ90 exhibited antimicrobial activity against Staphylococcus aureus TISTR1466, Staphylococcus epidermidis TISTR518, Bacillus subtilis TISTR008, Candida albicans TISTR5779, Candida tropicalis TISTR5174 and Saccharomyces cerevisiae TISTR5049. To our best knowledge, this study constitutes the first anti-bacterial and anti-yeast activities of Streptomyces triostinicus isolated from soil in Thailand.


1999 ◽  
Vol 6 (3) ◽  
pp. 163-167 ◽  
Author(s):  
Bahri Ülküseven ◽  
Aydin Tavman ◽  
Gülten Ötük

The metal complexes of nine 2-substituted-1H-benzimidazoles (I-IX) with Ni(II), Pd(II), Cu(II), Ag(I), Zn(II) salts were synthesized. The compounds were characterized by melting point, analytical data, IR spectroscopy and magnetic susceptibility. The antimicrobial activity of the compounds was determined by the disk diffusion method in Mueller-Hinton Agar on Staphylococcus aureusATCC 6538, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 8739, Klebsiella pneumoniae ATCC 4352, Pseudomonas aeruginosa ATCC 1539, Salmonella typhi, Shigella flexneri, Proteus mirabilis, Candida albicans ATCC 10231. Cu(II)and Ag(I)complexes of II, III and IV showed considerable activity against S. aureus, S. epidermidis, Ps. aeruginosa, S. typhi, Sh. flexneri and C. albicans microorganisms, the ligands themselves having no effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Musarat Amina ◽  
Nawal M. Al Musayeib ◽  
Nawal A. Alarfaj ◽  
Maha F. El-Tohamy ◽  
Hisham E. Orabi ◽  
...  

The present study focused on the prospect of fabricating a polymeric naturally extracted Moringa oleifera oil bionanocomposite film enriched with silver nanoparticles for antimicrobial activity. In this study, a standard concentration of Moringa oleifera oil (5-10 wt%) was used to fabricate a polymeric bionanocomposite film using polyvinyl chloride (PVC) enriched with silver nanoparticles. The active constituents of the extracted Moringa oleifera oil were verified using gas chromatography-mass spectrometry. Spectroscopic and microscopic techniques, including scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis, were employed to characterize and study the surface morphology of the fabricated bionanocomposite film. The antimicrobial activity of the fabricated bionanocomposite film was investigated using different strains of bacteria and fungus. The results revealed well-oriented and excellently dispersed silver nanoparticles in the PVC-Moringa oleifera oil matrix. The bionanocomposite was able to inhibit the growth of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa, Shigella flexneri, and Candida albicans. The combination of nanoparticles with polymers is opening new routes for engineering fixable composites, which showed antimicrobial properties.


2019 ◽  
Vol 66 (3-4) ◽  
pp. 220-226
Author(s):  
J. Efrain Ramirez-Benitez ◽  
Ibis Vargas Paredes ◽  
Luis F. Cuevas Glory ◽  
Enrique Sauri Duch ◽  
Victor M. Moo Huchin ◽  
...  

Plant-essential oils have been considered as an important source of bioactive molecules like antimicrobials, analgesics, anti-inflammatory and anti-carcinogen agents. Biological functions of plant extracts from the genus Capsicum are unknown. In the present work, non-polar fractions of ripe and unripe fruits of Capsicum chinense Jacq. Cultivar (cv.) Jaguar and Criollo were obtained by hexane-batch extraction and tested for antimicrobial activity against Gram-negative bacterial strain Escherichia coli (ATCC 25922), Gram-positive bacterial strains Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 25923) and Staphylococcus epidermidis (ATCC 12228), and yeast Candida albicans (ATCC 90028). Non-polar fractions from ripe fruits for both cv. exhibited greater antimicrobial activity compared to unripe fruits. Implication of numbered FFA’s on observed antimicrobial activity are discussed.


Sign in / Sign up

Export Citation Format

Share Document