scholarly journals Foaming performance test of palm oil foaming agent solution for prevention and fire extinguishing on peatland surface

Author(s):  
G Pramuhadi ◽  
M Rivai ◽  
E Hambali ◽  
A Suryani
2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2018 ◽  
Vol 67 ◽  
pp. 02010 ◽  
Author(s):  
Sari Dafinah Ramadhani ◽  
Saphira Nurina Fakhri ◽  
Setijo Bismo

The disadvantages of conventional biodiesel synthesis trigger the birth of new biodiesel synthesis methods using the DBD plasma reactor. The conventional methods with homogeneous and heterogeneous catalysts have significant constraints that the formation of glycerol compounds in large enough quantities that require considerable energy. The aim of present experiment is to design DBD non-thermal plasma reactor coaxial pipe type and to do its performance test in converting biodiesel The feed stock used are palm oil, ethanol, and argon gas as plasma carrier. Such a chemical reactor, this plasma reactor is also influenced by reaction kinetics and hydrodynamic factors. From this research, it can be seen that the optimum feed and gas flowrate being operated is 1.64 and 41.67 mL/s. The plasma reactor is used in the form of a quartz glass tube surrounded by a SS-314 spiral coil as an outer electrode. The applied operating conditions are 1 : 1 molar ratio of methanol/oil, ambient temperature of 28 - 30 °C, and pressure 1 bar. From this performance test, it is found that this plasma reactor can be used to synthesize biodiesel from palm oil and methanol without catalyst, no formation of soap, and minimal byproducts.


Author(s):  
M Rivai ◽  
E Hambali ◽  
A Suryani ◽  
R Fitria ◽  
S Firmansyah ◽  
...  

2018 ◽  
Vol 777 ◽  
pp. 564-568 ◽  
Author(s):  
Long He ◽  
Jin Shi Li ◽  
Mei Hua Chen ◽  
Yan Yang ◽  
Xin Peng Lou ◽  
...  

A high-performance quartz sand insulation brick was prepared by using low grade quartz sand under different sintering process conditions. The optimum sintering process conditions were obtained by analyzing the relationship between microstructure and sintering process. Through the compounding, pulping, forming, drying and sintering processes, and the performance test of the porous brick, the following conclusions can be drawn, the comprehensive performance in all aspects, the porosity is similar, the preferred high compressive strength conditions, in order to get a best The bonding point, brick body sintering temperature of 1150 °C, porosity of 74.56%, compressive strength of 2.1 MPa of porous brick, and the pores are smooth, more uniform distribution. With the prolonging of the holding time, the porosity of the porous brick is reduced, and the performance is 1h, the porosity is 77.22% and the compressive strength is 2.05 MPa. When the raw material ratio is 60% quartz sand, 30wt% kaolin, calcium carbonate 9.6wt%, foaming agent 0.4wt%, water ratio 0.9 holding time at 1h sintering at 1150°C can get better porosity and compressive strength of the insulation brick. The porous material was sintered at 1150 °C, the content of foaming agent was 0.2wt%, the ratio of water to material was 0.9, and the compressive pressure and porosity were the better.


2018 ◽  
Vol 2 (2) ◽  
pp. 33
Author(s):  
Ahmad Irawan ◽  
Robiah Robiah

Graphene is a nanomaterial that has been widely applied to various fields because of the uniqueness of the material, therefore this material is very interesting to be developed as an additive in lubricant. This study aims to determine the optimum additive weight ratio and obtain optimum operating conditions in the graphene dispersion process in base oil. This research is divided into 2 stages: preliminary research and main research. The preliminary study aims to transform the chemical structure of crude palm oil (CPO) through a three-stage reaction into a polyol as a base oil. The main research is the process of making bionanolubricant. Graphene is synthesized using a combination technique with a human urine as reducing agent. The formulations are known by varying the weight of the additive and the time of the dispersion. Variation of additive weight was 0% (A1), 0.25% (B1), 0.5% (C1), 1% (D1) while for dispersion time variation ranged from 0 min (A2), 60 min (B2), 90 minutes (C2) and, 120 minutes (D2). Based on the SEM-EDX test results, the SEM image formed graphene and spectrum layers on EDX show that the oxide in graphene has been successfully reduced. Bionanolubricant was tested for quality with 7 parameters. The composition of base oil formula 250 gr and graphene nanoparticles 0.5% w / w is the optimum additive weight ratio for C1 sample code whereas the economical dispersion time is 60 minutes. The result of the viscosity index test is 121,72, its pour point is 10,4oC, flash point equal to 228oC with lubrication capability tested through four ball tester got scar diameter equal to 0,87 mm. This Bionanolubricant belongs to the SAE 250 class and is classified as a GL-4 lubricant based on the quality level of API (American Petroleum Institute) performance test.


ÈKOBIOTEH ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 60-67
Author(s):  
D.A. Sharipov ◽  
◽  
S.P. Chetverikov ◽  

The paper describes the properties of a strain isolated from a natural population of soil microorganisms exposed to petrochemical production, capable of destroying fluorinated surfactants and some halogenated herbicides. In the model system, the growth dynamics of the DD4 bacterial strain was studied and it was shown that the culture actively accumulates biomass when using a fluorine-containing foaming agent such as a foaming agent and active substances of the herbicides Octapon, Chistalan, and Florax as a source of carbon and energy. Based on the data obtained, the DD4 bacterial strain can be used in remediation technologies for territories with a disturbed ecological status, formed when using fluoride-containing fire extinguishing agents and unregulated use of chemical plant protection products. According to the results of cultural-morphological, physiological-biochemical characteristics and the sequence of the 16S RNA DD4 gene, the strain was identified as a representative of the genus Pseudomonas.


Author(s):  
Mira Rivai ◽  
Erliza Hambali ◽  
Ani Suryani ◽  
Gatot Pramuhadi ◽  
Rista Fitria ◽  
...  

2017 ◽  
Author(s):  
Purwo Subekti ◽  
Erliza Hambali ◽  
Ani Suryani ◽  
Prayoga Suryadarma

Status: PostprintThis study aims to analyze the potential aplication of of palm oil-based foamingagent as peat fires fighter in Indonesia. From literature review, it has been known that thefoaming agent able to form foam to extinguish fire, wrap and refrigerate the burning peat. It isnecessary to develop the production and application of foaming agent in Indonesia becausepeat fires occur almost every year that caused smoke haze. Potential raw material for theproduction of environmental friendly foaming agent as foam extinguishing for peat fires inIndonesia aong other is palm oil due to abundant availability, sustainable, and foam producteasily degraded in the environment of the burnt areas. Production of foaming agent as firefightingin Indonesia is one alternative to reduce the time to control the fire and smog disasterimpact. Application of palm oil as a raw material for fire-fighting is contribute to increase thevalue added and the development of palm oil downstream industry.


Sign in / Sign up

Export Citation Format

Share Document