scholarly journals Spatial and Temporal changes in the Normalized Difference Vegetation Index and its Response to Climate Change in Shaanxi Province, China

Author(s):  
Feng Wang ◽  
XiaoKang Liu ◽  
Xu Liu ◽  
Yongfeng Li ◽  
Tao Wang
Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 362
Author(s):  
Jihui Yuan

Currently, global climate change (GCC) and the urban heat island (UHI) phenomena are becoming serious problems, partly due to the artificial construction of the land surface. When sunlight reaches the land surface, some of it is absorbed and some is reflected. The state of the land surface directly affects the surface albedo, which determines the magnitude of solar radiation reflected by the land surface in the daytime. In order to better understand the spatial and temporal changes in surface albedo, this study investigated and analyzed the surface albedo from 2000 to 2016 (2000, 2008, and 2016) in the entire Chinese territory, based on the measurement database obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s Terra satellite. It was shown that the Northeast China exhibited the largest decline in surface albedo and North China showed the largest rising trend of surface albedo from 2000 to 2016. The correlation between changes in surface albedo and the Normalized Difference Vegetation Index (NDVI) indicated that the change trend of surface albedo was opposite to that of NDVI. In addition, in order to better understand the distribution of surface albedo in the entire Chinese territory, the classifications of surface albedo in three years (2000, 2008, and 2016) were implemented using five classification methods in this study.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1755
Author(s):  
Shuo Wang ◽  
Chenfeng Cui ◽  
Qin Dai

Since the early 2000s, the vegetation cover of the Loess Plateau (LP) has increased significantly, which has been fully recorded. However, the effects on relevant eco-hydrological processes are still unclear. Here, we made an investigation on the changes of actual evapotranspiration (ETa) during 2000–2018 and connected them with vegetation greening and climate change in the LP, based on the remote sensing data with correlation and attribution analysis. Results identified that the average annual ETa on the LP exhibited an obvious increasing trend with the value of 9.11 mm yr−1, and the annual ETa trend was dominated by the changes of ETa in the third quarter (July, August, and September). The future trend of ETa was predicted by the Hurst exponent. Partial correlation analysis indicated that annual ETa variations in 87.8% regions of the LP were controlled by vegetation greening. Multiple regression analysis suggested that the relative contributions of potential evapotranspiration (ETp), precipitation, and normalized difference vegetation index (NDVI), to the trend of ETa were 5.7%, −26.3%, and 61.4%, separately. Vegetation greening has a close relationship with the Grain for Green (GFG) project and acts as an essential driver for the long-term development trend of water consumption on the LP. In this research, the potential conflicts of water demanding between the natural ecosystem and social-economic system in the LP were highlighted, which were caused by the fast vegetation expansion.


2021 ◽  
Vol 13 (7) ◽  
pp. 1340
Author(s):  
Shuailong Feng ◽  
Shuguang Liu ◽  
Lei Jing ◽  
Yu Zhu ◽  
Wende Yan ◽  
...  

Highways provide key social and economic functions but generate a wide range of environmental consequences that are poorly quantified and understood. Here, we developed a before–during–after control-impact remote sensing (BDACI-RS) approach to quantify the spatial and temporal changes of environmental impacts during and after the construction of the Wujing Highway in China using three buffer zones (0–100 m, 100–500 m, and 500–1000 m). Results showed that land cover composition experienced large changes in the 0–100 m and 100–500 m buffers while that in the 500–1000 m buffer was relatively stable. Vegetation and moisture conditions, indicated by the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI), respectively, demonstrated obvious degradation–recovery trends in the 0–100 m and 100–500 m buffers, while land surface temperature (LST) experienced a progressive increase. The maximal relative changes as annual means of NDVI, NDMI, and LST were about −40%, −60%, and 12%, respectively, in the 0–100m buffer. Although the mean values of NDVI, NDMI, and LST in the 500–1000 m buffer remained relatively stable during the study period, their spatial variabilities increased significantly after highway construction. An integrated environment quality index (EQI) showed that the environmental impact of the highway manifested the most in its close proximity and faded away with distance. Our results showed that the effect distance of the highway was at least 1000 m, demonstrated from the spatial changes of the indicators (both mean and spatial variability). The approach proposed in this study can be readily applied to other regions to quantify the spatial and temporal changes of disturbances of highway systems and subsequent recovery.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 286
Author(s):  
Sang-Jin Park ◽  
Seung-Gyu Jeong ◽  
Yong Park ◽  
Sang-hyuk Kim ◽  
Dong-kun Lee ◽  
...  

Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring of forest phenological responses to climate change is critical for predicting and managing threats to alpine populations. Remote sensing can be used to monitor forest communities in dynamic landscapes for responses to climate change at the species level. Spatiotemporal fusion technology using remote sensing images is an effective way of detecting gradual phenological changes over time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study aims to identify forest phenological characteristics and changes at the species–community level by fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI) value increased with time, which suggests that increasing temperature due to climate change has affected the start of the growth season in the study region. From this study, we found that increasing temperature affects the phenology of these regions, and forest management strategies like monitoring phenology using remote sensing technique should evaluate the effects of climate change.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Yahui Guo ◽  
Jing Zeng ◽  
Wenxiang Wu ◽  
Shunqiang Hu ◽  
Guangxu Liu ◽  
...  

Timely monitoring of the changes in coverage and growth conditions of vegetation (forest, grass) is very important for preserving the regional and global ecological environment. Vegetation information is mainly reflected by its spectral characteristics, namely, differences and changes in green plant leaves and vegetation canopies in remote sensing domains. The normalized difference vegetation index (NDVI) is commonly used to describe the dynamic changes in vegetation, but the NDVI sequence is not long enough to support the exploration of dynamic changes due to many reasons, such as changes in remote sensing sensors. Thus, the NDVI from different sensors should be scientifically combined using logical methods. In this study, the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI are combined using the Savitzky–Golay (SG) method and then utilized to investigate the temporal and spatial changes in the vegetation of the Ruoergai wetland area (RWA). The dynamic spatial and temporal changes and trends of the NDVI sequence in the RWA are analyzed to evaluate and monitor the growth conditions of vegetation in this region. In regard to annual changes, the average annual NDVI shows an overall increasing trend in this region during the past three decades, with a linear trend coefficient of 0.013/10a, indicating that the vegetation coverage has been continuously improving. In regard to seasonal changes, the linear trend coefficients of NDVI are 0.020, 0.021, 0.004, and 0.004/10a for spring, summer, autumn, and winter, respectively. The linear regression coefficient between the gross domestic product (GDP) and NDVI is also calculated, and the coefficients are 0.0024, 0.0015, and 0.0020, with coefficients of determination (R2) of 0.453, 0.463, and 0.444 for Aba, Ruoergai, and Hongyuan, respectively. Thus, the positive correlation coefficients between the GDP and the growth of NDVI may indicate that increased societal development promotes vegetation in some respects by resulting in the planting of more trees or the promotion of tree protection activities. Through the analysis of the temporal and spatial NDVI, it can be assessed that the vegetation coverage is relatively large and the growth condition of vegetation in this region is good overall.


2018 ◽  
Vol 42 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Biao Zeng ◽  
Fuguang Zhang ◽  
Taibao Yang ◽  
Jiaguo Qi ◽  
Mihretab G Ghebrezgabher

Alpine sparsely vegetated areas (ASVAs) in mountains are sensitive to climate change and rarely studied. In this study, we focused on the response of ASVA distribution to climate change in the eastern Qilian Mountains (EQLM) from the 1990s to the 2010s. The ASVA distribution ranges in the EQLM during the past three decades were obtained from the Thematic Mapper remote sensing digital images by using the threshold of normalized difference vegetation index (NDVI) and artificial visual interpretation. Results indicated that the ASVA shrank gradually in the EQLM and lost its area by approximately 11.4% from the 1990s to the 2010s. The shrunken ASVA with markedly more area than the expanded one was mainly located at altitudes from 3700 m to 4300 m, which were comparatively lower than the average altitude of the ASVA distribution ranges. This condition led to the low ASVA boundaries in the EQLM moving upwards at a significant velocity of 22 m/decade at the regional scale. This vertical zonal process was modulated by topography-induced differences in local hydrothermal conditions. Thus, the ASVA shrank mainly in its lower parts with mild and sunny slopes. Annual maximum NDVI in the transition zone increased significantly and showed a stronger positive correlation with significantly increasing temperature than insignificant precipitation variations during 1990–2015. The ASVA shrinkage and up-shifting of its boundary were attributed to climate warming, which facilitated the upper part of alpine meadow in the EQLM by releasing the low temperature limitation on vegetation growth.


Author(s):  
Fadi Abdullah alanazi, Yaser Rashed Alzannan, Faten Hamed Na Fadi Abdullah alanazi, Yaser Rashed Alzannan, Faten Hamed Na

Souda is one of the important regions in Saudi Arabia in terms of spatial and temporal changes in vegetation cover; It includes the National Park, which is a leading tourist destination and one of the most beautiful parks in it. by tracking the spatial and temporal changes of vegetation cover by integrating remote sensing and geographic information systems, through the application of the modified soil vegetation index MSAVI during the period (2014- 2018), it became clear the decrease in the quantity and density of vegetation cover in the area. Thus, the study concluded that this indicator is one of the best indicators that can be used to extract vegetation cover from satellite images.


2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.


Sign in / Sign up

Export Citation Format

Share Document