scholarly journals Study on the Smoke Spread Law of a Subway Tunnel Fire under the Synergistic Action of Shaft Smoke Exhaust and Longitudinal Ventilation

Author(s):  
H Zhang ◽  
G Zhang ◽  
G Y Ran ◽  
J C Sun
2021 ◽  
pp. 1420326X2199842
Author(s):  
Fei Wang ◽  
Fang Liu ◽  
Imad Obadi ◽  
Miaocheng Weng

Metro trains running in tunnels cause piston wind, and when a metro train stops in a tunnel due to a fire, the effect of the piston wind on smoke propagation characteristics cannot be ignored. In this paper, a theoretical model based on the unsteady flow theory of the Bernoulli equation was established to describe the change in piston wind speed under fire conditions. The characteristics of the smoke propagation in tunnel fires under the effect of the piston wind were analysed by means of numerical simulation. The result indicates that the piston wind has a significant effect on the characteristics of smoke distribution. In a longitudinally ventilated tunnel, whether the direction of piston wind is the same as that of longitudinal ventilation could seriously affect the control of fire smoke. When the direction is the same, the piston wind could enhance the smoke control effect of the longitudinal ventilation. Otherwise, the smoke control effect could be significantly diminished, and the smoke control by the critical wind speed of longitudinal ventilation would fail. The findings could contribute to a better understanding of the characteristics of tunnel fire to control smoke spread under the influence of piston wind.


Author(s):  
Ti-Sheng HUANG ◽  
Nobuyoshi KAWABATA ◽  
Miho SEIKE ◽  
Masato HASEGAWA ◽  
Futoshi TANAKA ◽  
...  

2020 ◽  
Vol 43 (4) ◽  
pp. 386-396 ◽  
Author(s):  
Bo Lou ◽  
Qin Rifu ◽  
Eric Hu ◽  
Qin Jiyun ◽  
Huang Zhenwen
Keyword(s):  

2018 ◽  
Vol 1141 ◽  
pp. 012150
Author(s):  
J Glasa ◽  
L Valasek ◽  
P Weisenpacher

Author(s):  
Felipe Vittori ◽  
Luis Rojas-Solo´rzano ◽  
Armando J. Blanco ◽  
Rafael Urbina

This work deals with the numerical (CFD) analysis of the smoke propagation during fires within closed environments. It is evaluated the capacity of the emergency ventilation system in controlling the smoke propagation and minimizing the deadly impact of an eventual fire in a wagon within the Metro de Caracas subway tunnel on the passengers safety. For the study, it was chosen the tunnel section between Teatros and Nuevo Circo subway stations, which consists of two parallel independent twin tunnels, connected through a transverse passage. The tunnels are provided by a longitudinal ventilation system, integrated by a set of reversible fans located at both ends of the tunnels. Three stages were considered in the study: (a) Model set up; (b) Mesh sensitivity analysis; (c) Validation of the physical-numerical parameters to be used in the numerical model; and (d) Simulation of fire scenarios in Metro de Caracas subway stations. Stages (b)–(c), aimed to testing and calibrating the CFD tool (ANSYS-CFX10™), focused on reproducing experimental data from Vauquelin and Me´gret [1], who studied the smoke propagation in a fire within a 1:20 scale road tunnel. Stage (d) critical scenarios were established via a preliminary discussion with safety experts from Metro de Caracas, in order to reduce the computer memory and the number of simulations to be performed. The analyses assessed the reliability of escape routes and alternative paths for the evacuation of passengers. Additionally, the smoke front movement was particularly computed, as a function of time, in order to determine the possible presence of the “backlayering” phenomenon [5]. Results demonstrate the strengths and weaknesses of the current ventilation system in the event of a fire in the subway tunnel, and suggest new strategies to address this potentially lethal event to minimize the risks for passengers.


2017 ◽  
Vol 114 ◽  
pp. 733-743 ◽  
Author(s):  
Shaogang Zhang ◽  
Xudong Cheng ◽  
Kai Zhu ◽  
Yongzheng Yao ◽  
Long Shi ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1411 ◽  
Author(s):  
Peng Zhao ◽  
Zhongyuan Yuan ◽  
Yanping Yuan ◽  
Nanyang Yu ◽  
Tao Yu

Smoke control is a crucial issue in a long-distance subway tunnel fire, and a two-point extraction ventilation system is an effective way to solve this problem, due to the characteristics of controlling the smoke in a limited area and removing high-temperature and toxic smoke in time. In this study, the ceiling temperature distribution and the critical exhaust volumetric flow rate to control the smoke in the zone between two extraction vents were investigated in a long-distance subway tunnel fire with a two-point extraction ventilation system. Experiments were carried out in a 1/20 reduced-scale tunnel model based on Froude modeling. Factors, including the heat release rate (HRR), the extraction vent length, the internal distance between two extraction vents and exhaust volumetric flow rate, were studied. Smoke temperature below the ceiling, exhaust volumetric flow rate and smoke spreading configurations were measured. The ceiling temperature distribution was analyzed. Meanwhile, an empirical equation was developed to predict the critical exhaust volumetric flow rate based on the one-dimensional theory, experimental phenomenon and the analysis of forces acting at the smoke underneath the extraction vent. The coefficients in the empirical equation were determined by experimental data. Compared with the experimental results, the developed empirical equation can predict the critical exhaust volumetric flow rate well. Research outcomes in this study will be beneficial to the design and application of two-point extraction ventilation system for a long-distance subway tunnel fire.


2017 ◽  
Vol 53 (6) ◽  
pp. 1985-2006 ◽  
Author(s):  
Kai Zhu ◽  
Long Shi ◽  
Yongzheng Yao ◽  
Shaogang Zhang ◽  
Hui Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document