scholarly journals Deformation Monitoring and Simulation Analysis of Deep Foundation Excavation Construction for subway station

Author(s):  
De-Yong Wang ◽  
Kunpeng Wu ◽  
Jing Wang ◽  
Kai-Fang Deng
2011 ◽  
Vol 90-93 ◽  
pp. 485-489
Author(s):  
Li Guo ◽  
Peng Li He ◽  
Guang Jun Zhang

The enclosure pile is extensively used as retaining structure in the foundation pit excavation. And it is always combined with other reinforcement measures. So it is unreasonable to a certain degree that the enclosure pile is analyzed as cantilever structure. Taken the deep foundation pit of a subway station in Hefei for instance, the effect of other reinforcement measures on restrained conditions of enclosure piles in the paper was taken into account. And the behavior of enclosure pile under various restrained conditions was analyzed. Based on that, some helpful suggestions for practical retaining structure of foundation pit were put forward.


2014 ◽  
Vol 711 ◽  
pp. 529-534
Author(s):  
Zi Sheng Yang ◽  
Jun Xia Liu ◽  
Yi Ren Wang

For the past few years, great development has been achieved in deep foundation excavation. However, due to foundation excavation’s locality, individual diversity, complexity and uncertainty, the probability of accidents in foundation pit engineering tends to be greater than that in main works, and the accident rate may even reach about 20%, which makes the study on factors leading to foundation excavation accidents quite necessary and meaningful. By use of Analytic Hierarchy Process (AHP), this paper has figured out the ratio (weight) of the investigation, design, construction and other factors leading to foundation excavation accidents to the whole factor set, which is of great guiding significance to the study on prevention and treatment of foundation excavation accidents in future.


2013 ◽  
Vol 443 ◽  
pp. 79-83
Author(s):  
Zhen Xi Yu

In recent years, with the enhancement of overall national strength in China, the computer simulation technology has been developed rapidly and widely applied to engineering construction. Particularly, investment proportion of the technology in deep foundation pit engineering is immense. Yet affected by national conditions in China, the construction and application of deep foundation pit engineering have many extensive factors. It also results in insufficient vigor of finite element analysis of deep foundation pit support construction. In this way, construction problems arise frequently under the condition that there exist buildings around. With some deep foundation pit support engineering, the thesis conducts simulation analysis of the engineering through the technology of nonlinear three-dimensional finite element.Project profile


2012 ◽  
Vol 594-597 ◽  
pp. 1901-1904
Author(s):  
Hua Yuan ◽  
Yan Hong

In this paper, the currently available, feasible controlling measures for the deformation of foundation excavation and its surrounding environment are summarized systemically, which is mainly embodied in pit collapse, adjacent building differential settlement as well as underground pipeline cracking. Then first from the two aspects: artificial recharge used as prevention method and management measure separately, the paper illustrates the control principle, operation method and matters needing attention during artificial recharge. In addition, the difference between pumping well and recharge well are discusses. The research results will provide direction for the deformation control of deep foundation excavation and the operation of artificial recharge.


2014 ◽  
Vol 919-921 ◽  
pp. 1416-1420
Author(s):  
Hui Wu Jin

Urban development often requires the construction of deep excavations. There are some difficulties during design and construction of foundation excavation, such as large engineering quantity, poor geological conditions, as well as challenges to design and construction of retaining and protecting structure. To solve these difficulties, supporting system of steel circle beam, steel pipe support and stiffened support compounding with steel pipe pile cofferdam is designed. Soil resistance calculating method is used for support structure design in all possible conditions and the result is compared with that using the classical method. With reasonable supporting process and construction measures, monitoring results including displacement of steel pipe piles and greatest axial force can meet the norm requirements. It is proved that the retaining and protecting system designed is safe and reliable. With the benefit of small deformation and high integrity, locking steel pipe piles gave full play to its locking function of water. The design method in the paper is feasible and may offer some references for similar deep foundation excavation.


2013 ◽  
Vol 779-780 ◽  
pp. 1180-1183
Author(s):  
Ke Wu

t constitutes a common problem that deep foundation exerts negative influences on adjacent underground structures. The Chegongmiao subway station is adjacent to the first subway of Shenzhen and Fengshengding shopping street, which is on the planning construction of Shenzhen 11th subway. Based on the finite element method, the paper is investigated to efficiently simulate the effect of the deep foundation on the adjacent underground structures. The engineering measures to reduce the influence of construction are supported for determine the construction plan.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Haifeng Guo ◽  
Aijun Yao ◽  
Jiantao Zhang ◽  
Yijun Zhou ◽  
Yanfei Guo

The demand for buildings constructed along subway lines is increasing, and analysis of the impact of foundation excavation and building construction on adjacent tunnels is critical. This study investigated the variation law of tunnel deformation and surrounding earth pressure on an existing tunnel resulting from deep foundation excavation and the load of buildings. Four groups of scale model tests and corresponding numerical simulation calculations were conducted in four different modes: over unloading-loading, shallow-side unloading-loading, middle-side unloading-loading, and deep-side unloading-loading, which are according to the different relative position of the foundation pit and the tunnel. The results show that when the tunnel stretches across different areas, corresponding deformation occurs owing to the different mechanical mechanisms during excavation and loading. The results can provide evidence for the further study on the impact of adjacent construction process on the tunnels.


Sign in / Sign up

Export Citation Format

Share Document