scholarly journals Research on Magnetic Flux Detection Technology for Shallow Sea Moving Targets

Author(s):  
Kui Huang ◽  
Chaoqun Xu ◽  
Zhong Yi ◽  
Shaohua Zhang ◽  
Lifei Meng
2022 ◽  
Vol 185 ◽  
pp. 108366
Author(s):  
Xiang Pan ◽  
Zhongdi Liu ◽  
Peng Zhang ◽  
Yining Shen ◽  
Jianjun Qiu
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1967
Author(s):  
Chaoqun Xu ◽  
Li Yang ◽  
Kui Huang ◽  
Yang Gao ◽  
Shaohua Zhang ◽  
...  

The ocean is a very important arena in modern warfare where all marine powers deploy their military forces. Due to the complex environment of the ocean, underwater equipment has become a very threatening means of surprise attack in modern warfare. Therefore, the timely and effective detection of underwater moving targets is the key to obtaining warfare advantages and has important strategic significance for national security. In this paper, magnetic flux induction technology was studied with regard to the difficulty of detecting underwater concealed moving targets. Firstly, the characteristics of a magnetic target were analyzed and an equivalent magnetic dipole model was established. Secondly, the structure of the rectangular induction coil was designed according to the model, and the relationship between the target’s magnetism and the detection signal was deduced. The variation curves of the magnetic flux and the electromotive force induced in the coil were calculated by using the numerical simulation method, and the effects of the different motion parameters of the magnetic dipole and the size parameters of the coil on the induced electromotive force were analyzed. Finally, combined with the wavelet threshold filter, a series of field tests were carried out using ships of different materials in shallow water in order to verify the moving target detection method based on magnetic flux induction technology. The results showed that this method has an obvious response to moving targets and can effectively capture target signals, which verifies the feasibility of the magnetic flux induction detection technology.


2021 ◽  
Vol 11 (20) ◽  
pp. 9489
Author(s):  
Yinliang Jia ◽  
Shicheng Zhang ◽  
Ping Wang ◽  
Kailun Ji

With the rapid development of the world’s railways, rail is vital to ensure the safety of rail transit. This article focuses on the magnetic flux leakage (MFL) non-destructive detection technology of the surface defects in railhead. A Multi-sensors method is proposed. The main sensor and four auxiliary sensors are arranged in the detection direction. Firstly, the root mean square (RMS) of the x-component of the main sensor signal is calculated. In the data more significant than the threshold, the defects are determined by the relative values of the sensors signal. The optimal distances among these sensors are calculated to the size of a defect and the lift-off. From the finite element simulation and physical experiments, it is shown that this method can effectively suppress vibration interference and improve the detection accuracy of defects.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4116 ◽  
Author(s):  
Qingyuan Zhao ◽  
Jianting Zhou ◽  
Qianwen Xia ◽  
Senhua Zhang ◽  
Hong Zhang

In an actual structure, the arrangement of steel bars is complicated, there are many factors affecting the corrosion of steel bars, and these factors affect each other. However, accurately reflecting the corrosion of steel bars in actual engineering through theoretical calculations is difficult. Besides, it is impossible to detect and evaluate steel bars rust completely and accurately. This article is based on spontaneous magnetic leakage detection technology and adopts the method of stage corrosion and scanning along the reinforcing bar. Based on spontaneous magnetic flux leakage detection technology, the linear change rate of the tangential component curve of the magnetic flux leakage signal generated after the corrosion of a steel bar is studied, and a comparison is made between the steel bar coated concrete samples with different steel bar diameters. In this paper, the “origin of magnetic flux leakage signal” is defined as a reference point, which is convenient for effectively comparing the magnetic signal curves under all operating conditions. Besides, the “rust-magnetic fluctuation parameter” is proposed to accurately reflect the sudden change of leakage magnetic field caused by disconnection due to the corrosion of a steel bar. A new data processing method is provided for the non-destructive testing of steel corrosion using the spontaneous magnetic flux leakage effect, which can effectively reduce the influence of steel bar diameter on magnetic flux leakage signal and improve the precision of non-destructive testing technology of steel bar corrosion using the metal magnetic memory effect.


2014 ◽  
Vol 602-605 ◽  
pp. 1733-1736
Author(s):  
Qiang Li ◽  
Dong Shen ◽  
Xiao Kang Wu

To the background establishment in background difference method, a method is proposed to detect moving targets based on the improved Burendra algorithm. This method can accurately detect moving targets in the video images, meanwhile it can respond to the changes of background and light intensity in the scene in time, being with good real-time performance and robustness.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


2000 ◽  
Vol 179 ◽  
pp. 155-160
Author(s):  
M. H. Gokhale

AbstractData on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun’s surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last decade or so.


Sign in / Sign up

Export Citation Format

Share Document