scholarly journals Simulation and discussion of CO2 flooding associated gas separation by mixed amine absorption method

2021 ◽  
Vol 804 (2) ◽  
pp. 022002
Author(s):  
Bing Chen ◽  
Qiong Zhao ◽  
Weigang Cui
2021 ◽  
Author(s):  
Chun-wei Zhang ◽  
xiao sun ◽  
Tao Wang ◽  
Bao Wen ◽  
He Li ◽  
...  

Author(s):  
Yu.V. Ivanov ◽  
H.V. Zhuk ◽  
L.R. Onopa ◽  
S.P. Krushnevych

The production of biomethane from biogas energy costsfor the most widely used amine and water processes for extracting carbon dioxide from biogas were analyzed using computer simulation. Combined water-amine absorption method of biogas purification from CO2 wasincluded in the comparative analysis. For the CO2 content of the biogas from 32 to 42 %, the specific energy costs when using water absorption to extract carbon dioxide from biogas are, on average, in ~ 2.5 times lower than amine absorption, but the loss of CH4 by water absorption was 7.1–7.6 % due to its watersolubility with practically zero CH4 loss when using amine absorption and insignificant loss (0.17–2.8 %) using water-amine technology. Using preliminary water absorption of CO2 saved CH4 can compensate the power consumption of the biogas compressor or the heatcosts of saturated amine absorbent regenerating. This will allowto reduce energy consumption to almost equal to water absorptionone. The results of simulation of carbon dioxide extraction from biogas can be used to optimize technological absorption schemes for the production of biomethane — an analogueof natural gas. Bibl. 13, Fig. 5, Tab. 6.


2015 ◽  
Vol 26 (1) ◽  
pp. 45-53
Author(s):  
Hackeun Kim ◽  
Myongwon Bae ◽  
Sangjin Lee ◽  
Seongyong Ha ◽  
Chungseop Lee ◽  
...  

Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


2019 ◽  
Author(s):  
Anders Andreasen

In this article the optimization of a realistic oil and gas separation plant has been studied. Two different fluids are investigated and compared in terms of the optimization potential. Using Design of Computer Experiment (DACE) via Latin Hypercube Sampling (LHS) and rigorous process simulations, surrogate models using Kriging have been established for selected model responses. The surrogate models are used in combination with a variety of different evolutionary algorithms for optimizing the operating profit, mainly by maximizing the recoverable oil production. A total of 10 variables representing pressure and temperature various key places in the separation plant are optimized to maximize the operational profit. The optimization is bounded in the variables and a constraint function is included to ensure that the optimal solution allows export of oil with an RVP < 12 psia. The main finding is that, while a high pressure is preferred in the first separation stage, apparently a single optimal setting for the pressure in downstream separators does not appear to exist. In the second stage separator apparently two different, yet equally optimal, settings are revealed. In the third and final separation stage a correlation between the separator pressure and the applied inlet temperature exists, where different combinations of pressure and temperature yields equally optimal results.<br>


Sign in / Sign up

Export Citation Format

Share Document