scholarly journals Agrobiodiversity of using refugia plants towards several plant gardens at Tulung Rejo, East Java

2021 ◽  
Vol 886 (1) ◽  
pp. 012066
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Hartini ◽  
Yunus Musa

Abstract A study and identificiation on agrobiodiversity of refugia plant as alternative solution by farmers towards their several plant gardens to repel pest was conducted at Tulung Rejo, East Java, Indonesia in March 2021. Refugia plants are biodiversity plants that grow around cultivated plants, which have the potential as a place of protection and a source of food for natural enemy insects (both predators and parasitoids). The principle of refugia pants is that these plants can attract and become a place of life and a source of life for insects, natural enemies of pests. the reseach was using a survey method with interview with farmers who have a land and using refugia plant as a natural pesticides to repel pests of their plants. besides, this research was also using a physical indentification of several refugia plants. Among several locations in Tulung Rejo, the results show that on average farmers use refugia plants of the type of kenikir flower Cosmos caudatus. This has evident because from 20 garden locations, 18 of them use Cosmos caudatus. The needs of farmers in Tulung Rejo, East Java to repel pests naturally.

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


2013 ◽  
Vol 75 (11) ◽  
pp. 2167-2195 ◽  
Author(s):  
Juhua Liang ◽  
Sanyi Tang ◽  
Robert A. Cheke ◽  
Jianhong Wu

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


2021 ◽  
Author(s):  
Steven E Naranjo ◽  
James R Hagler ◽  
John A Byers

Abstract Conservation biological control is a fundamental tactic in integrated pest management (IPM). Greater biological control services can be achieved by enhancing agroecosystems to be more favorable to the presence, survival, and growth of natural enemy populations. One approach that has been tested in numerous agricultural systems is the deployment of synthetic chemicals that mimic those produced by the plant when under attack by pests. These signals may attract arthropod natural enemies to crop habitats and thus potentially improve biological control activity locally. A 2-yr field study was conducted in the cotton agroecosystem to evaluate the potential of synthetic methyl salicylate (MeSA) to attract native arthropod natural enemies and to enhance biological control services on two key pests. Slow-release packets of MeSA were deployed in replicated cotton plots season long. The abundance of multiple taxa of natural enemies and two major pests were monitored weekly by several sampling methods. The deployment of MeSA failed to increase natural enemy abundance and pest densities did not decline. Predator to prey ratios, used as a proxy to estimate biological control function, also largely failed to increase with MeSA deployment. One exception was a season-long increase in the ratio of Orius tristicolor (White) (Hemiptera: Anthocoridae) to Bemisia argentifolii Bellows and Perring (= Bemisia tabaci MEAM1) (Hemiptera: Aleyrodidae) adults within the context of biological control informed action thresholds. Overall results suggest that MeSA would not likely enhance conservation biological control by the natural enemy community typical of U.S. western cotton production systems.


2020 ◽  
Vol 4 (2) ◽  
pp. 108
Author(s):  
Dimas Prakoswo Widayani ◽  
Kresna Shifa Usodri

Mount Arjuna is a mountainous area with forests and several cultivated plants located in Malang Regency, East Java. The forest is a complex area that is used as a protected area, research and production forest for agricultural commodities. The complex is located in the forest resulted in highly varied environmental conditions. The forest consists of several areas, namely protected forest, production forest, coffee plantation, and seasonal plantations. The Arjuna mountain area has several stands including pine and mahogany, but most of it is filled with pines by 90% and mahogany trees around 10%. Most of the coffee plants found in the Arjuna mountain forest area are Arabica coffee, while the rest is robusta coffee. This research was conducted on the slopes of Mount Arjuna, located in Sumbersari Village, Karangploso District, Malang Regency, East Java. This research was conducted from July to October 2017. This research employed a survey method by taking several sample points that represent the coffee plants in the area. Several sampling plots for land suitability analysis were identified in the area: The observation stages were carried out by taking air temperature data using a thermohygrometer by taking the minimum and maximum temperature data, taking air humidity using a thermohigrometer as well as minimum and maximum data and light intensity data using lux meters, taking soil samples to measure nutrients and soil fertility, and measuring the height and slope of the land. The results of the observations that have been made will be analyzed using the land suitability analysis method, by adjusting the area's data with the land suitability level for robusta and arabica coffee plants.Gunung Arjuna merupakan kawasan pegunungan dengan hutan serta beberapa tanaman budidaya yang terletak di Kabupaten Malang, Jawa Timur. Hutan tersebut merupakan kawasan kompleks yang dimanfaatkan sebagai kawasan lindung, riset dan juga hutan produksi untuk komoditas pertanian. Kondisi hutan yang kompleks mengakibatkan kondisi lingkungan tersebut sangat bervariatif. Hutan terdiri dari beberapa kawasanya, yaitu hutan lindung, hutan produksi, perkebunan kopi serta kawasan tanaman semusim. Kawasan gunung Arjuna memiliki beberapa tegakan diantaranya pinus dan mahoni namun sebagian besar dipenuhi oleh pinus sebesar 90% dan pohon mahoni berkisar 10%. Sebagian besar tanaman kopi yang terdapat pada kawasan hutan gunung Arjuna adalah jenis kopi arabika sedangkan sisanya adalah kopi robusta. Penelitian ini dilakukan di kawasan lereng Gunung Arjuna, Terletak di Desa Sumbersari, Kecamatan Karangploso, Kabupaten Malang, Jawa Timur. Penelitian ini akan dilaksanakan pada bulan Juli–Oktober 2017. Penelitian ini menggunakan metode survei dengan mengambil beberapa titik sampel yang mewakili yang mewakili tanaman kopi di kawasan tesebut. Beberapa plot sampel pengambilan sampel untuk analisis kesesuaian lahan diidentifikasi pada kawasan: Adapun tahapan pengamatan yang dilakukanya itu pengambilan data suhu udara menggunakan termohigrometer dengan mengambil data suhu minimum dan maksimum, pengambilan kelembapan udara dengan alat termohigrometer juga data minimum dan maksimum serta data intensitas cahaya menggunakan lux meter, pengambilan sampel tanah untuk mengukur hara serta kesuburan tanah, mengukur ketinggian serta tingkat kelerengan lahan. Hasil pengamatan yang telah dilakukan akan dianalisis menggunakan metode analisis kesesuaian lahan, dengan menyesuaikan data kawasan tersebut dengan tingkat kesesuaian lahan untuk tanaman kopi robusta dan arabika.


1956 ◽  
Vol 47 (4) ◽  
pp. 685-702 ◽  
Author(s):  
F. J. Simmonds

The biology and general ecology ofMelittomma insulareFairm. in the Seychelles is briefly described and the difficulties in the biological control of this pest are stressed.As much information as possible was obtained concerning the species of the little-known family Lymexylonidae, particularly with regard to their biology, which in most cases has not been investigated. Several species might warrant further investigation with a view to providing natural enemies for use againstM. insulare, but in general what is known of their biology does not afford much hope that an effective parasite or predator will be found.The biology ofAtractocerus brasiliensisLep. & Serv. was investigated in detail in Trinidad but no natural enemy was found.The only possibility is thatRhizophagus dispar(Payk.), recorded as attackingHylecoetus dermestoides(L.) in England, might also attack the eggs ofM. insulare.


1934 ◽  
Vol 25 (1) ◽  
pp. 55-61 ◽  
Author(s):  
K. P. Anantanarayanan

The black-headed palm caterpillar (Nephantis serinopa, Meyr.) has been known to be a serious pest of coconut palms both in Ceylon and South India for many years past, and during the past ten years its appearance on a serious scale along the Malabar coast in South India has been attracting the attention of the Entomological Section of the Madras Agricultural Department. Among the different methods of control, the utilisation of the natural enemies of the pest has been tried to some extent. One of the more important natural enemies found to exert some appreciable influence on this pest was a Eulophid wasp, Trichospilus pupivora, Ferr. As one of the officers of the Entomological Section engaged in the work connected with this coconut pest, the author had opportunities of closely studying this parasite, and in this paper a brief account is attempted of the bionomics of this insect and of some methods employed in breeding it on a large scale.


1999 ◽  
Vol 89 (5) ◽  
pp. 411-421 ◽  
Author(s):  
J. de Kraker ◽  
A. van Huis ◽  
K.L. Heong ◽  
J.C. van Lenteren ◽  
R. Rabbinge

AbstractPopulations of rice leaffolders and their natural enemies were studied in eight crops of irrigated rice in Laguna Province, the Philippines. The rice leaffolder complex consisted of three species: Cnaphalocrocis medinalis (Guenée), Marasmia patnalis Bradley and M. exigua Butler. Leaffolder population dynamics were characterized by an egg peak at maximum tillering and a broad larval peak around booting stage. Peak densities ranged from 0.2 to 2.0 larvae per hill. Most larvae originated from immigrant moths and there was no substantial second generation. The seasonal percentage egg parasitism by Trichogramma sp. ranged from 0 to 27%, and percentage larval parasitism from 14 to 56%. The braconid Macrocentrus philippinensis Ashmead was the most commonly reared larval parasitoid. Forty natural enemy taxa that may attack rice leaffolders were identified from suction and sweepnet samples: 24 predator taxa and 16 parasitoid taxa. The estimated survival rates from leaffolder egg to larval stages and between larval stages showed large variation between rice crops, but were not clearly correlated with observed levels of parasitism, natural enemy abundance, or natural enemy to leaffolder ratios. It is suggested that the generally low densities of rice leaffolders in Philippine transplanted rice are caused by their ovipositional preference for crops at the maximum tillering stage, allowing for only one generation, and by high immature mortality caused by the abundant and diverse complex of natural enemies.


2020 ◽  
Vol 6 (4) ◽  
pp. 243-259 ◽  
Author(s):  
Michael Staab ◽  
Andreas Schuldt

Abstract Purpose of Review Natural enemies are an important component for forest functioning. By consuming herbivores, they can be effective top-down regulators of potential pest species. Tree mixtures are generally expected to have larger predator and parasitoid populations compared to monocultures. This assumption is based on the “enemies” hypothesis, a classical ecological concept predicting a positive relationship between plant diversity (and complexity) and natural enemies, which, in turn, should increase top-down control in more diverse environments. However, the “enemies” hypothesis has mostly been tested and supported in relatively simple agricultural ecosystems. Until recently, research in forests was sparse. We summarize the upcoming knowledge-base for forests and identify forest characteristics likely shaping relationships between tree diversity, natural enemies (abundance, species richness, diversity), and top-down control. We further identify possible implications for mixed species forestry and key knowledge gaps. Recent Findings Tree diversity (almost exclusively quantified as tree species richness) does not consistently increase enemy abundance, diversity, or result in herbivore control. Tests of the “enemies” hypothesis are largely based on aboveground natural enemies (mainly generalists) and have highly variable outcomes across taxa and study systems, sometimes even finding a decrease in predator diversity with increasing tree diversity. Recurrent effects of tree species identity and composition indicate that a closer focus on tree functional and phylogenetic diversity might help to foster a mechanistic understanding of the specific circumstances under which tree diversity can promote top-down control. Summary Our review suggests that the “enemies” hypothesis may not unambiguously apply to forests. With trees as structurally complex organisms, even low-diversity forests can maintain a high degree of habitat heterogeneity and may provide niches for many predator and parasitoid species, possibly blurring correlations between tree and natural enemy diversity. Several further factors, such as latitude, identity effects, intraguild predation, or functional and phylogenetic components of biodiversity, may confound the predictions of the “enemies” hypothesis. We identify topics needing more research to fully understand under which conditions tree diversity increases natural enemy diversity and top-down control—knowledge that will be crucial for forest management.


2020 ◽  
Vol 49 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Hailey N Shanovich ◽  
Brian H Aukema ◽  
Robert L Koch

Abstract Halyomorpha halys is an invasive, polyphagous insect that feeds on many major crops, including apple. Statewide monitoring in Minnesota has shown continued increase of H. halys populations and occurrence of this pest in apple orchards. Potential arthropod natural enemies of H. halys and other pests have not been studied in Minnesota apple orchards. The purpose of this study was to characterize the composition of natural enemy communities; compare their abundances, richness and diversities between apple cultivars using different sampling methods; and assess the impact of natural enemies on sentinel eggs of H. halys in Minnesota apple orchards. Sampling occurred during the summers of 2017 and 2018 on Zestar! and Honeycrisp cultivars in four different apple orchards. In vacuum samples, arachnids, neuropterans, and coccinellids had the highest relative abundances. On yellow sticky traps, anthocorids were the most abundant. The total predator abundance differed between the cultivars sampled across years, with more predators found on Zestar! compared with Honeycrisp. No differences were observed in richness or diversity between cultivars with the exception of yellow sticky traps in 2017, which showed a greater diversity of predators in Zestar!. Despite the abundance of natural enemies sampled, sentinel egg masses deployed in the orchards each summer suffered on average <2% predation and no parasitism across years. Knowledge of differences in predator abundance between cultivars could inform management decisions; however, with current management practices, the potential for biological control of H. halys in conventional apple orchards appears low.


Sign in / Sign up

Export Citation Format

Share Document