scholarly journals Washing and Chopping Pre-treatment Effect of Vetiver Roots on Vetiver Oil Yield and Distillation Time

2021 ◽  
Vol 891 (1) ◽  
pp. 012021
Author(s):  
G M Sabila ◽  
C Sephia ◽  
T Karliati ◽  
Y Suhaya ◽  
R Dungani

Abstract Vetiver is a type of grass mainly used for its roots to be extracted into vetiver oil. Despite the increasing market demand, the productivity of vetiver oil in Indonesia still consider low. One of the determinant factors of the extraction yield is the pre-treatment before distillation. This study aimed to determine the best pre-treatment method to improve the vetiver oil extraction using water and steam distillation by looking at the yield, distillation rate, and forecasted distillation duration. The distillation process was using water and steam distillation method for 9 hours. The data analysis method used Durbin-Watson autocorrelation analysis. The feasibility test of polynomial regression was modelled with the F test and ANOVA variance test. The result showed that the combination of washing 2-3 times and chopping pre-treatments of vetiver roots with a size of ± 5 cm could significantly increase the extracted vetiver oil by producing the highest yield (0.36% (wet-based) and 0.47% (dry based)), the highest extraction rate (0.057%/h) and the fastest forecasted duration of the distillation (10.5 hours). The combination of washing and chopping pre-treatments of vetiver roots was the best method and could be an economical solution for low productivity problems of vetiver oil in Indonesia.

Author(s):  
E Y. Wang ◽  
J. T. Cherian ◽  
A. Madsen ◽  
R. M. Fisher

Many steel parts are electro-plated with chromium to protect them against corrosion and to improve their wear-resistance. Good adhesion of the chrome plate to the steel surface, which is essential for long term durability of the part, is extremely dependent on surface preparation prior to plating. Recently, McDonnell Douglas developed a new pre-treatment method for chrome plating in which the steel is anodically etched in a sulfuric acid and hydrofluoric acid solution. On carbon steel surfaces, this anodic pre-treatment produces a dark, loosely adhering material that is commonly called the “smut” layer. On stainless steels and nickel alloys, the surface is only darkened by the anodic pre-treatment and little residue is produced. Anodic pre-treatment prior to hard chrome plating results in much better adherence to both carbon and alloy steels.We have characterized the anodic pre-treated steel surface and the resulting “smut” layer using various techniques including electron spectroscopy for chemical analysis (ESCA) on bulk samples and transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) on stripped films.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 246-251 ◽  
Author(s):  
Joanna Tkaczewska ◽  
Maciej Wielgosz ◽  
Piotr Kulawik ◽  
Marzena Zajac

The influence of drying temperature on the characteristics and gel properties of gelatine from Cyprinus carpio L. skin was studied. Gelatine was extracted from the carp skin using NaOH and ethanol pre-treatment method, extracted in water in 45°C and then dried in 4 different temperatures: 50, 70, 80°C and freeze-dried. The  electrophoresis and functional properties of gelatines were investigated. Freeze drying allowed to obtain a high gelling force, and all other methods did not give satisfactory results. The proteins in gelatines dried at higher temperatures separated by electrophoresis gave severely blurred bands. It may be explained by thermal hydrolysis of collagen fibrils. Freeze drying is the only effective method for drying this product, which can be used in industry.


Talanta ◽  
2007 ◽  
Vol 71 (3) ◽  
pp. 1172-1179 ◽  
Author(s):  
Y. Fajardo ◽  
E. Gómez ◽  
F. Garcias ◽  
V. Cerdà ◽  
M. Casas

Desalination ◽  
2010 ◽  
Vol 250 (2) ◽  
pp. 557-561 ◽  
Author(s):  
J.J. Lee ◽  
M.A.H. Johir ◽  
K.H. Chinu ◽  
H.K. Shon ◽  
S. Vigneswaran ◽  
...  

Author(s):  
Avinash V Borgaonkar ◽  
Ismail Syed ◽  
Shirish H Sonawane

Molybdenum disulphide (MoS2) is a popularly used solid lubricant in various applications due to its superior tribological behaviour. However, it possesses poor wear resistance which requires further improvement. In the present study efforts have been made to enhance the tribological properties of pure MoS2 coating film by doping TiO2 nanoparticles as a reinforcement material. The Manganese phosphating is selected as a pre-treatment method to improve the bond strength between coating and substrate. The coating is bonded with the substrate material employing sodium silicate as a binder. The effects of wt. % of TiO2 onto the mechanical properties of composite MoS2-TiO2 coating such as hardness and bond strength have been studied. In addition coating microstructure before and after experimental test was studied using optical microscope and scanning electron microscope. It was also found that with increase in wt. % addition of TiO2 upto 15% into MoS2 base matrix, the hardness of coating increases proportionally. Beyond 15 wt. % addition of TiO2, the coating becomes brittle in nature. This leads to reduction in the scratch resistance.


2021 ◽  
Author(s):  
Soo Takasu ◽  
Isabella Supardi Parida ◽  
Yoshihiro Kojima ◽  
Toshiyuki Kimura ◽  
Kiyotaka Nakagawa

We demonstrated the conversion of GAL-DNJ into DNJ improves mulberry leaves bioavailability and constructed a novel enzymatic-based method to induce the hydrolysis of GAL-DNJ to DNJ.


2020 ◽  
Author(s):  
Ki Hoon Park ◽  
Minjee Kim ◽  
Seoung Eun Bae ◽  
Hee Jung Lee ◽  
Kyung-Chang Kim ◽  
...  

Abstract Background: Integrase (IN) is an essential protein for HIV replication that catalyzes insertion of the reverse-transcribed viral genome into the host chromosome during the early steps of viral infection. Highly active anti-retroviral therapy (HAART) is a HIV/AIDS treatment method that combines three or more antiviral drugs often formulated from compounds that inhibit the activities of viral reverse transcriptase and protease enzymes. Early IN inhibitors (INIs) mainly serve as integrase strand transfer inhibitors (INSTI) that disrupt strand transfer by binding the catalytic core domain (CCD) of IN. However, mutations of IN can confer resistance to INSTI. Therefore, non-catalytic integrase inhibitors (NCINI) have been developed as next-generation INIs. Methods: In this study, we evaluated and compared the activity of INSTI and NCINI according to the analysis method. Antiviral activity was compared using p24 ELISA with MT2 cell and TZM-bl luciferase system with TZM-bl cell. Each drug was serially diluted and treated to MT2 and TZM-b1 cells, infected with HIV-1 AD8 strain and incubated for 5 and 2 days, respectively. Additionally, to analyze properties of INSTI and NCINI, transfer inhibition assay and 3'-processing inhibition assay were performed. Results: During screening of INIs using the p24 ELISA and TZM-bl luciferase systems, we found an inconsistent result with INSTI and NCINI drugs. Following infection of MT2 and TZM-bl cells with T-tropic HIV-1 strain, both INSTI and NCINI treatments induced significant p24 reduction in MT2 cells. However, NCINI showed no antiviral activity in the TZM-bl luciferase system, indicating that this widely used and convenient antiretroviral assay is not suitable for screening of NCINI compounds that target the second round of HIV-1 replication. Conclusion: Accordingly, we recommend application of other assay procedures, such as p24 ELISA or reverse transcription activity, in lieu of the TZM-bl luciferase system for preliminary NCINI drug screening. Utilization of appropriate analytical methods based on underlying mechanisms is necessary for accurate assessment of drug efficacy.


2020 ◽  
Vol 15 (3) ◽  
pp. 818-828
Author(s):  
Miradatul Najwa Muhd Rodhi ◽  
Fazlena Hamzah ◽  
Ku Halim Ku Hamid

Gallic acid and quercetin equivalent were determined in the crude extract of matured leaves Aquilaria malaccensis and Aquilaria subintegra. The leaves of both Aquilaria species were dried at 60 °C for 24 hours, ground and sieved into particle size of 250, 300, 400, 500, and 1000 µm. Then, each particle size of leaves was soaked in distilled water with a ratio of 1:100 (w/v) for 24 hours and undergoes the pre-treatment method by using ultrasonicator (37 kHz), at the temperature of 60 °C for 30 minutes. The crude extracts were obtained after about 4 hours of hydrodistillation process. The highest concentration of gallic acid and quercetin equivalent was determined in the crude extract from the particle size of 250 µm. The kinetics of pancreatic lipase inhibition was further studied based using the Lineweaver-Burk plot, wherein the concentration of p-NPP as the substrate and pancreatic lipase were varied. Based on the formation of the lines in the plot, the crude leaves extract of both Aquilaria species exhibit the mixed-inhibition on pancreatic lipase, which indicates that in the reaction, the inhibitors were not only attached to the free pancreatic lipase, but also to the pancreatic lipase-(p-NPP) complex. The reaction mechanism was similar to non-competitive inhibition; however the value of dissociation constant, Ki, for both inhibition pathways was different. The inhibition shows an increment in Michaelis-Menten constant (Km) and a reduction in the maximum pancreatic lipase activity (Vm) compared to the reaction without Aquilaria spp. crude extracts (control). This proved that the inhibition occurred in this reaction. Copyright © 2020 BCREC Group. All rights reserved 


Sign in / Sign up

Export Citation Format

Share Document