scholarly journals The effect of time and velocity variation in sequencing batches reactor on TSS and nitrogen removal in tofu waste

2021 ◽  
Vol 896 (1) ◽  
pp. 012027
Author(s):  
S Sudarno ◽  
N Hardyanti ◽  
B Zaman ◽  
A Arihta ◽  
R Putri

Abstract The tofu industry is one of the home industries which in the processing process, produces liquid waste. Tofu liquid waste is known to contain very high organic matter such as Nitrogen and TSS so that if it is directly discharged into water bodies, if discharged directly into the environment will cause water. The purpose of this study was to determine and analyse the effect of variations in times and velocity of sequence batch reactor on the optimization of Nitrogen and TSS removal in tofu industrial wastewater by anaerobic bacteria originating from natural sediments. This study uses a Sequencing Batch Reactor, and the waste used is artificial by the characteristics in the preliminary test. In this study, time and speed variations were used in the mixing process. The artificial waste has a TSS value of 2,910 mg/l and Nitrogen of 18.82 mg/l. The results show that using a sequence batch reactor can reduce the TSS value to 66 mg/l and reduce the nitrogen value to 1.214 mg/l.

2021 ◽  
Vol 896 (1) ◽  
pp. 012028
Author(s):  
N Hardyanti ◽  
S Sudarno ◽  
B Zaman ◽  
A Arihta ◽  
R Putri

Abstract The tofu industry produces liquid waste that can cause pollution if it is not processed first. Tofu liquid waste has the characteristics of containing high organic matter such as BOD and COD so that if it has directly discharged into the environment, it will reduce the carrying capacity of the environment. The purpose of this study was to determine and analyse the effect of variations in times and velocity of sequence batch reactor on the optimization of COD and BOD removal in tofu industrial wastewater by anaerobic bacteria originating from natural sediments. The method used is an experimental method where the method is to find the effect on other things controlled by using artificial waste. The removal of COD and BOD in tofu industrial wastewater can be done by biological treatment process with attached growth using Sequencing Batch Reactor. The reactor inoculated by the septic tank sediment was fed with artificial waste containing a concentration of COD of 7,000 mg/l and BOD of 2,000 mg/l. For 35 days, this reactor will be operated in batches. Results showed a decrease in BOD and COD parameters using a sequencing batch reactor with BOD concentration 176 mg/l and COD concentration 570 mg/l.


2021 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Muhammad Al Kholif ◽  
Ida Istaharoh ◽  
Pungut ◽  
Joko Sutrisno ◽  
Sri Widyastuti

Tofu industrial wastewater is a contributor to environmental pollution. Wastewater contains high levels of COD and TSS. The purpose of this study was to determine the effectiveness of reducing pollutant loads in tofu liquid waste by using the phytoremediation method using water jasmine (Echinodorus Palaefolius). The initial stage of the research was a preliminary test to determine the initial content of the waste. The acclimatization process is carried out by observing the process of plant growth during the research process. To maximize plant growth, dilution is carried out with various concentrations of 25% wastewater with 75% diluting water and 50% wastewater with 50% diluting water. Sampling was carried out every 12 hours for 5 days. The results showed that the highest effectiveness of COD reduction occurred in RFT 25% with a residence time of 12 hours at 39.83%, while for TSS parameters the highest effectiveness was at RFT 25% with a residence time of 12 hours by 69%.


2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


1997 ◽  
Vol 35 (1) ◽  
pp. 193-198 ◽  
Author(s):  
A. G. Brito ◽  
A. C. Rodrigues ◽  
L. F. Melo

This study concerns an assessment of a SBR operation that associates anaerobic aggregated biomass with a pulsed action during the reaction phase, a system named Pulsed Sequencing Batch Reactor (P-SBR). The system uses a diaphragm pump as a pulsator unit to increase the liquid-solid contact, in order to avoid dead zones and possible external mass transfer resistance. A preliminary study of the operation of the reactor was performed with a low strength synthetic wastewater with a COD near 1000 mg.1−1 and a sub-optimal temperature of 22°C. A removal efficiency of 60-70% was attained after 5 and 6 hours of reaction time. The respective organic loads were 5 – 6 kg COD.m−3. day−1, thus supporting the feasibility of the P-SBR system for wastewater treatment in such conditions. The results also indicate that a ratio of 1.8%o between the swept volume delivered by the pump and the reactor volume was adequate to promote a flow turbulence in the sludge blanket and that a redox potential of near −400 mV was readily created by anaerobic bacteria after the reactor filling step.


2018 ◽  
Vol 34 ◽  
pp. 02022
Author(s):  
Azlina Mat Saad ◽  
Farrah Aini Dahalan ◽  
Naimah Ibrahim ◽  
Sara Yasina Yusuf ◽  
Siti Aqlima Ahmad ◽  
...  

Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic – anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.


1985 ◽  
Vol 20 (1) ◽  
pp. 42-53 ◽  
Author(s):  
A. Décréon ◽  
N. Thérien ◽  
J.P. Jones

Abstract A laboratory-scale study has demonstrated the technical feasibility of using a sequencing batch reactor to treat the wastewater from the manufacture of shampoo and other personal care products. The results demonstrate that good treatment (90% removal efficiency for organic substrate as measured by TOD) is possible at an organic loading below 0.70 kg TOD/kgVSS/day. Higher ratios provide some treatment but there may some risk of washing out the biomass when the organic loading exceeds 1.4 kg TOD/kg VSS/day. The effluent produced was suitable for discharge to a municipal sewage system or to a polishing pond but not for direct discharge to receiving waters. The treatment was totally adequate when nutrients were kept in the ratio B0D5/N/P of 100/5/1. Results were obtained for a ratio of 100/2.5/0.5 and the system did not adequately remove organic material. The response to an inadequate supply of nutrients was very rapid and the production of biomass was severely affected. The effect of various ways of filling the reactor were investigated but no significant effect was found. Lower temperatures reduced the efficiency of the system.


Author(s):  
Irvan Dahlan

Landfilling is one of the most important methods for disposal of solid waste in many countries. One of the most obvious problems associated with the landfilling practice is the generation of leachate. This chapter reviews case studies on the on-site treatment of leachates using various technologies in selected European and Asian countries. It was shown that the generation of leachate varies widely in both quantity and quality in European and Asian countries. Biological treatment and membrane technology show very high efficiencies in treating leachate generated from Odayeri landfill (in European side of Turkey) and Komurcuoda landfill (at Asian side of Turkey). Leachates from Arpley landfill (UK) and Bukit Tagar landfill (Malaysia) were successfully treated using sequence batch reactor (SBR). Fairly good treatment efficiencies were obtained using constructed wetlands (CWs) in treating Gdansk-Szadolki landfill leachate in Poland. Furthermore, the use of coagulation, filtration and membrane technologies has been proven effectively in treating Nonthaburi landfill leachate in Thailand.


Sign in / Sign up

Export Citation Format

Share Document