scholarly journals Analytical study on the effect of extreme seismic strains on the transverse buckling of ultra-reinforced seismic walls and their environmental design

2021 ◽  
Vol 899 (1) ◽  
pp. 012033
Author(s):  
Theodoros Chrysanidis ◽  
Vassilis Panoskaltsis

Abstract In the context of the present work, the influence of the degree of tension on the phenomenon of transverse instability of reinforced concrete seismic walls is examined. Useful conclusions are drawn regarding the influence of the degree of elongation on the phenomenon of transverse buckling. These conclusions are substantiated both experimentally and analytically, as the results of the experiments are compared with the corresponding results of the analytical investigation. Moreover, some thoughts on a more environmental design of R/C seismic walls are stated. The present investigation is both experimental and analytical and consists of 4 test specimens. These specimens simulate the extreme boundary edges of structural walls. All columns simulate only the extreme reinforced areas of the walls, in order to study the basic mechanism of the phenomenon. The detailing of the specimens consists of 6 rebars with a diameter of 12 mm for each bar. The geometric dimensions are the same for all specimens. What differentiates the specimens from each other is the degree of tension they have sustained. More specifically, the tensile degrees used are 10‰, 20‰, 30‰ and 50‰. The loading stages of each specimen for all specimens are as follows: (a) Uniaxial central tensile loading on each test specimen apart from the specimen sustained 0‰ degree of tension; (b) Uniaxial central compression loading on each specimen till its failure due to buckling or due to an excess of its cross-section compressive strength. The present study focuses on the tensile loading stage only. Extreme tensile strengths are also used, e.g., 30‰ and 50‰, in order to take into account, the cases of extreme seismic excitations. The experimental study is followed by the numerical investigation of these 4 specimens using appropriate statistical software and finite elements.

2014 ◽  
Vol 601 ◽  
pp. 151-154
Author(s):  
Milos Milosevic ◽  
Uroš Tatić ◽  
Simon Sedmak ◽  
Jasmina Perović ◽  
Vesna Miletić

The purpose of this paper was to determine tensile loading that leads to dental restoration failure, i.e. the critical values of stress. In order to analyze stress distribution within the restoration and tooth, mechanical properties of materials and tissues, such as Young modulus and Poissons ratio were taken into account. An additional purpose of the paper was to determine whether tensile or shear stresses that occur in the restorative composite and the surrounding enamel cause this failure. Tensile stress is caused by forces acting in the direction perpendicular to the cross-section of a given element, whereas shear stresses are caused by forces parallel to said cross section. A 3D numerical model of a tooth including three different materials (dentine, enamel and composite) was made and used for these calculations. These results will be used as a base for the physical experiment.


1984 ◽  
Vol 106 (2) ◽  
pp. 228-234 ◽  
Author(s):  
E. Akbil ◽  
T. W. Lee

This paper is concerned with the analytical investigation of the motion characteristics of tripode joints with general proportions and arbitrary position of shafts. It provides a rigorous proof that the tripode joint is not a true constant velocity joint except in ideal cases, and this is due to the inherent orbital motion of the output spider shaft. Algebraic derivations of the input-output equation and explicit relations for motion parameters are presented. From this general analytical study, some insights into the behavior of the tripode joint are observed and interpreted.


1937 ◽  
Vol 10 (4) ◽  
pp. 778-786
Author(s):  
R. Ariano

Abstract The results of tests of the brittleness of ebonite are described. Resilience is influenced chiefly by the moment of inertia of the cross section of the test-specimen, but it seems also to be affected by the form of the specimen. The state of vulcanization has considerable influence on these mechanical properties within the undercured range, but with thorough vulcanization the state of cure plays no appreciable part. Notching of test-specimens is not of great importance. It diminishes the resilience, but when the tests are compared on a basis of equal moments of inertia of the resistant cross sections, this diminution becomes inappreciable in the case of brittle ebonites. On the other hand, the shape of the notch in ebonites containing no loading ingredients does influence the resilience. With V-shaped notches, the depth of the notch and its angle of aperture influence considerably the resilience of this latter type of ebonite, and notches of minimum depth are sufficient to have an appreciable effect.


1976 ◽  
Vol 98 (1) ◽  
pp. 251-257 ◽  
Author(s):  
E. K. Levy ◽  
C. L. Tsai ◽  
M. P. Groover

An analytical study of the effect of crater wear on the response of a remote thermocouple sensor is described. The remote thermocouple sensor is at present being developed as a device for the on-line measurement of tool wear. This technique depends for its operation on the strong influence of wear on the transient temperature variations in the tool. The two-dimensional transient temperature variations in the chip and tool regions are determined using a numerical finite-difference technique. Results are obtained under idealized cutting conditions with a zero wear rate, a normal wear rate, and an accelerated wear rate. Comparisons are made between the three cases to develop relationships for the effect of wear on the temperature at the remote thermocouple location.


Sign in / Sign up

Export Citation Format

Share Document