scholarly journals The Effect of a Rubber Sheet on the Dynamic Response of a Machine Foundation Located over a Small Thickness of Soil Layer

2021 ◽  
Vol 906 (1) ◽  
pp. 012044
Author(s):  
Omid Khalaj ◽  
Reza Zakeri ◽  
Seyed Naser Moghaddas Tafreshi ◽  
Bohuslav Mašek ◽  
Ctibor Štadler

Abstract Placing a machine footing over a small thickness of soil layer, which is located over a bedrock, could encounter many challenges due to the bed’s notable stiffness in comparison to the soil. The advantages of using rubbers to protect facilities (structures, machine foundations, nearby footings and equipment, etc.) from vibration and control its consequences are well known nowadays. In this study, the benefits of employing a small thickness of rubber sheet (2 mm) on the dynamic response of a machine foundation which is located over four thicknesses of soil (210, 420, 630, and 840 mm) has been investigated. The soil layer is located over an artificial bedrock that is consisted of a thick concrete layer. The tests have been conducted in a vast test pit of size 2500×2500 mm and a depth of 840 mm by using a semi large-scale machine foundation model with a square concrete foundation of width 400×400×100 mm. It was observed that, by increasing the soil layer thickness, the resonant frequency and amplitude of the vibrating system decreases. Moreover, by employing a rubber sheet beneath the machine footing, the resonant frequency of the vibrating system significantly decreases especially for a small thickness of the soil layer. Although, using a rubber sheet could slightly increase the resonant amplitude, but the benefit of the resonant frequency-changing capability of the rubber sheet is too impressive by taking the resonant frequency of the system far enough from the unchangeable working frequency of the machine and preventing the resonant phenomenon to happen.

1980 ◽  
Vol 17 (2) ◽  
pp. 292-295
Author(s):  
K. S. Sankaran ◽  
N. R. Krishnaswamy ◽  
P. G. Bhaskaran Nair

The effect of the test pit size and the backfill density on the dynamic response of footings is studied. Results of steady-state torsional field vibration tests with and without backfill on a footing kept in an excavated pit of varying lateral dimensions are presented and discussed. The influence of backfill density on the response is also investigated. It is observed that the dynamic response is practically unaffected if the lateral dimensions of the test pit are equal to or more than 2.25 times the corresponding dimensions of the footing. The resonant amplitude of rotation decreases and the resonant frequency of vibration increases with increasing backfill density.


2018 ◽  
Vol 162 ◽  
pp. 01001 ◽  
Author(s):  
Saad Al-Wakel ◽  
Ahmed Abdulrasool

Machine foundations require significant attention from designers. The main goal of the design of machine foundation is to limit the amplitude displacement and not disturb the people who work near the machine. In some cases, if the design of machine foundations does not satisfy the acceptable value of the dynamic response (such as maximum amplitude of displacement), the stabilization of soil under the machine foundation may be used to decrease the amplitude of displacement. This paper outlines effect of stabilized soil under the foundation by cement on the displacement response of machine foundations. Three-dimensional analyses by using finite element method are carried out to investigate the effect of depth of stabilized layer with different percentage of cement content on the dynamic response of the machine foundation. In addition, the effect of area stabilized by cement material on the dynamic response of machine foundation is investigated. The results shown that, the dynamic response of machine foundations generally decreases with increasing the depth of soil layer stabilized with cement. A significant decrease in the displacement of machine foundations is occurred for the stabilized soil layer with a depth of two times of the width of foundation, and the optimum percentage of cement for stabilizing is 6%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryan Kozak ◽  
Kasra Khorsand ◽  
Telnaz Zarifi ◽  
Kevin Golovin ◽  
Mohammad H. Zarifi

AbstractA patch antenna sensor with T-shaped slots operating at 2.378 GHz was developed and investigated for wireless ice and frost detection applications. Detection was performed by monitoring the resonant amplitude and resonant frequency of the transmission coefficient between the antenna sensor and a wide band receiver. This sensor was capable of distinguishing between frost, ice, and water with total shifts in resonant frequency of 32 MHz and 36 MHz in the presence of frost and ice, respectively, when compared to the bare sensor. Additionally, the antenna was sensitive to both ice thickness and the surface area covered in ice displaying resonant frequency shifts of 2 MHz and 8 MHz respectively between 80 and 160 μL of ice. By fitting an exponential function to the recorded data, the freezing rate was also extracted. The analysis within this work distinguishes the antenna sensor as a highly accurate and robust method for wireless ice accretion detection and monitoring. This technology has applications in a variety of industries including the energy sector for detection of ice on wind turbines and power lines.


2020 ◽  
Author(s):  
Emma L. M. Lewington ◽  
Stephen J. Livingstone ◽  
Chris D. Clark ◽  
Andrew J. Sole ◽  
Robert D. Storrar

Abstract. We identify and map traces of subglacial meltwater drainage around the former Keewatin Ice Divide, Canada from ArcticDEM data. Meltwater tracks, tunnel valleys and esker splays exhibit several key similarities, including width, spacing, their association with eskers and transitions to and from different types, which together suggest they form part of an integrated drainage signature. We collectively term these features 'meltwater corridors' and propose a new model for their formation, based on observations from contemporary ice masses, of pressure fluctuations surrounding a central conduit. We suggest that eskers record the imprint of a central conduit and meltwater corridors the interaction with the surrounding distributed drainage system. The widespread aerial coverage of meltwater corridors (5–36 % of the bed) provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuations and variations in spatial distribution and evolution of the subglacial drainage system, which will modulate the ice dynamic response.


2021 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Serdean

The influence of the driving electrode positions on the dynamic response of polysilicon MEMS resonators used in biosensing applications is studied as a function of the operating conditions (vacuum versus free-air operating mode). The scope of this research work is orientated towards identifying the effect of driving electrode position on the dynamic response of sensing MEMS used in biomass detection. The mass-deposition detection is based on the change in the resonant frequency of vibrating elements considering a biological detection film deposited on the oscillating structure. The operating conditions, such as medium pressure, change the behavior of the dynamic response including the resonant frequency, the amplitude, and the velocity of oscillations as well as the quality factor and the loss of energy. The change in the dynamic response of the investigated MEMS cantilevers as a function of the lower electrode position and operating conditions is evaluated using a Polytec Laser Vibrometer. The decrease in the amplitude and velocity of the oscillations if the lower electrode is moved from the beam free-end toward the beam anchor is experimentally monitored. The changes in the response of samples in vacuum are slightly influenced by the electrode position compared with the response of the same sample in ambient conditions. Moreover, the effect of oscillating modes (first, second and third modes) is taken into consideration to improve the dynamical detection of the investigated samples. The obtained results indicate that different responses of MEMS resonators can be achieved if the position of the driving electrode is moved from the cantilever free-end toward the anchor. Indeed, the resonator stiffness, velocity and amplitude of oscillations are significantly modified for samples oscillating in ambient conditions for biological detection compared with their response in vacuum.


1969 ◽  
Vol 59 (1) ◽  
pp. 1-22
Author(s):  
Apostol Poceski

Abstract Damage distribution in Skopje can be explained in terms of the seismic response of surficial soils. There exists a generally good correlation between the distribution of damage, the thickness of the surficial soil layer, and the predominant periods of microtremors. The most heavily damaged region is covered with about 20 to 30 meters of alluvium, and the predominant period of this alluvium is about 0.36 seconds. The alluvium in this heavily damaged region probably was shaken near its resonant frequency, and soil amplification may have reached three. The greatest destruction was recorded along a belt which is defined by an abrupt change of the thickness of the alluvium. However, heavy destruction was also recorded on the shallow alluvium side, and no clear explanation exists for this.


2021 ◽  
Author(s):  
Manolis G. Grillakis

<p>Remote sensing has proven to be an irreplaceable tool for monitoring soil moisture. The European Space Agency (ESA), through the Climate Change Initiative (CCI), has provided one of the most substantial contributions in the soil water monitoring, with almost 4 decades of global satellite derived and homogenized soil moisture data for the uppermost soil layer. Yet, due to the inherent limitations of many of the remote sensors, only a limited soil depth can be monitored. To enable the assessment of the deeper soil layer moisture from surface remotely sensed products, the Soil Water Index (SWI) has been established as a convolutive transformation of the surface soil moisture estimation, under the assumption of uniform hydraulic conductivity and the absence of transpiration. The SWI uses a single calibration parameter, the T-value, to modify its response over time.</p><p>Here the Soil Water Index (SWI) is calibrated using ESA CCI soil moisture against in situ observations from the International Soil Moisture Network and then use Artificial Neural Networks (ANNs) to find the best physical soil, climate, and vegetation descriptors at a global scale to regionalize the calibration of the T-value. The calibration is then used to assess a root zone related soil moisture for the period 2001 – 2018.</p><p>The results are compared against the European Centre for Medium-Range Weather Forecasts, ERA5 Land reanalysis soil moisture dataset, showing a good agreement, mainly over mid-latitudes. The results indicate that there is added value to the results of the machine learning calibration, comparing to the uniform T-value. This work contributes to the exploitation of ESA CCI soil moisture data, while the produced data can support large scale soil moisture related studies.</p>


Sign in / Sign up

Export Citation Format

Share Document