scholarly journals Dynamic Characterization of Biosensing MEMS Cantilevers with Different Position of the Driving Electrode—Vacuum Response Versus Ambient Conditions

2021 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Serdean

The influence of the driving electrode positions on the dynamic response of polysilicon MEMS resonators used in biosensing applications is studied as a function of the operating conditions (vacuum versus free-air operating mode). The scope of this research work is orientated towards identifying the effect of driving electrode position on the dynamic response of sensing MEMS used in biomass detection. The mass-deposition detection is based on the change in the resonant frequency of vibrating elements considering a biological detection film deposited on the oscillating structure. The operating conditions, such as medium pressure, change the behavior of the dynamic response including the resonant frequency, the amplitude, and the velocity of oscillations as well as the quality factor and the loss of energy. The change in the dynamic response of the investigated MEMS cantilevers as a function of the lower electrode position and operating conditions is evaluated using a Polytec Laser Vibrometer. The decrease in the amplitude and velocity of the oscillations if the lower electrode is moved from the beam free-end toward the beam anchor is experimentally monitored. The changes in the response of samples in vacuum are slightly influenced by the electrode position compared with the response of the same sample in ambient conditions. Moreover, the effect of oscillating modes (first, second and third modes) is taken into consideration to improve the dynamical detection of the investigated samples. The obtained results indicate that different responses of MEMS resonators can be achieved if the position of the driving electrode is moved from the cantilever free-end toward the anchor. Indeed, the resonator stiffness, velocity and amplitude of oscillations are significantly modified for samples oscillating in ambient conditions for biological detection compared with their response in vacuum.

2014 ◽  
Vol 658 ◽  
pp. 694-699
Author(s):  
Marius Pustan ◽  
Corina Birleanu ◽  
Florina Rusu ◽  
Simion Haragâş

MEMS resonator represents currently one of the important research areas of Microelectromechanical Systems (MEMS). The usual applications of MEMS resonators are the radio-frequency electromechanical devices, MEMS gyroscopes and resonant sensors. The main part of a MEMS resonator is the mechanical vibrating structure that can be fabricated as microcantilevers, microbridges or in a more complex configuration as micromembranes. The scope of this paper is to investigate the dynamic behavior of an electrostatically actuated MEMS cantilever under different oscillating modes in order to determine the resonant frequency, amplitude and velocity of oscillations. Moreover, based on the resonant frequency experimental curves, the quality factor for different oscillating modes is determined. The effect of operating conditions on the frequency response of investigated microcantilever is monitored. As a consequence, the experimental tests are performed both in ambient conditions and in vacuum. The dynamic response of microcantilever in vacuum is influenced by the intrinsic dissipation energy and the sample behavior in air depends on the intrinsic losses as well as the extrinsic dissipation energy.


Author(s):  
Marco Masciola ◽  
Xiaohong Chen ◽  
Qing Yu

As an alternative to the conventional intact stability criterion for floating offshore structures, known as the area-ratio-based criterion, the dynamic-response-based intact stability criteria was initially developed in the 1980s for column-stabilized drilling units and later extended to the design of floating production installations (FPIs). Both the area-ratio-based and dynamic-response-based intact stability criteria have recently been adopted for floating offshore wind turbines (FOWTs). In the traditional area-ratio-based criterion, the stability calculation is quasi-static in nature, with the contribution from external forces other than steady wind loads and FOWT dynamic responses captured through a safety factor. Furthermore, the peak wind overturning moment of FOWTs may not coincide with the extreme storm wind speed normally prescribed in the area-ratio-based criterion, but rather at the much smaller rated wind speed in the power production mode. With these two factors considered, the dynamic-response-based intact stability criterion is desirable for FOWTs to account for their unique dynamic responses and the impact of various operating conditions. This paper demonstrates the implementation of a FOWT intact stability assessment using the dynamic-response-based criterion. Performance-based criteria require observed behavior or quantifiable metrics as input for the method to be applied. This is demonstrated by defining the governing load cases for two conceptual FOWT semisubmersible designs at two sites. This work introduces benchmarks comparing the area-ratio-based and dynamic-response-based criteria, gaps with current methodologies, and frontier areas related to the wind overturning moment definition.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


Author(s):  
Wesley R. Bussman ◽  
Charles E. Baukal

Because process heaters are typically located outside, their operation is subject to the weather. Heaters are typically tuned at a given set of conditions; however, the actual operating conditions may vary dramatically from season to season and sometimes even within a given day. Wind, ambient air temperature, ambient air humidity, and atmospheric pressure can all significantly impact the O2 level, which impacts both the thermal efficiency and the pollution emissions from a process heater. Unfortunately, most natural draft process burners are manually controlled on an infrequent basis. This paper shows how changing ambient conditions can considerably impact both CO and NOx emissions if proper adjustments are not made as the ambient conditions change. Data will be presented for a wide range of operating conditions to show how much the CO and NOx emissions can be affected by changes in the ambient conditions for fuel gas fired natural draft process heaters, which are the most common type used in the hydrocarbon and petrochemical industries. Some type of automated burner control, which is virtually non-existent today in this application, is recommended to adjust for the variations in ambient conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
İsmail Kıyak ◽  
Gökhan Gökmen ◽  
Gökhan Koçyiğit

Predicting the lifetime of a LED lighting system is important for the implementation of design specifications and comparative analysis of the financial competition of various illuminating systems. Most lifetime information published by LED manufacturers and standardization organizations is limited to certain temperature and current values. However, as a result of different working and ambient conditions throughout the whole operating period, significant differences in lifetimes can be observed. In this article, an advanced method of lifetime prediction is proposed considering the initial task areas and the statistical characteristics of the study values obtained in the accelerated fragmentation test. This study proposes a new method to predict the lifetime of COB LED using an artificial intelligence approach and LM-80 data. Accordingly, a database with 6000 hours of LM-80 data was created using the Neuro-Fuzzy (ANFIS) algorithm, and a highly accurate lifetime prediction method was developed. This method reveals an approximate similarity of 99.8506% with the benchmark lifetime. The proposed methodology may provide a useful guideline to lifetime predictions of LED-related products which can also be adapted to different operating conditions in a shorter time compared to conventional methods. At the same time, this method can be used in the life prediction of nanosensors and can be produced with the 3D technique.


Author(s):  
Gopalakrishnan Anand ◽  
Ellen Makar

Ambient conditions greatly affect the combustion turbine performance. The Absorption Refrigeration Cycle Turbine Inlet Chilling (ARCTIC) system can chill the inlet air of the turbine to maintain optimum performance at all ambient temperatures. However, turbine characteristics, bell-mouth icing concerns, economics and performance guarantees require maintaining the inlet air temperature within a narrow range throughout the year. These considerations require strict control of the Turbine Inlet Air Chilling (TIAC) coil performance over a wide range of operating conditions. This paper describes the field performance and control of the chilling coil for a Mars 100 turbine. The controls logic had been developed from previously published empirical model of the chilling coil and model of the chilling loop performance at the various ambient conditions. Since commissioning at the end of summer 2020, the ARCTIC has provided inlet air chilling over a range of ambient conditions. Typically, the inlet air is maintained at 7.2∘C (45∘F) by controlling the TIAC chilled water flow rate and temperature. On cooler days, if the inlet air temperature drops to 5.6∘C (42∘F) the chilled water pump turns OFF automatically to prevent bell-mouth icing. Thus, the chiller accommodates chilling load variations down to zero load. On colder days, the ARCTIC continues operating till the ambient temperature drops below 1.7∘C (35∘F) and then turns OFF. The chiller turns back ON when the 8 h average inlet air temperature exceeds 10∘C (50∘F). These parameters can be adjusted remotely by the operator and help maintain performance guarantees while minimizing chiller cycling. Quasi-steady state data were analyzed to quantify the chilling load and coil performance over a range of operating conditions.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001920-001935 ◽  
Author(s):  
Colin Stevens ◽  
Robert Dean ◽  
Chris Wilson

MEMS resonators have many applications, including micromachined gyroscopes, resonating pressure sensors and RF devices. Typically, MEMS resonators consist of a proof mass and suspension system that allows the proof mass motion in one or two directions. Micromachined actuators provide kinetic energy to the proof mass, usually at its resonant frequency. In the simplest resonators, the actuators are driven with an AC signal at or near the resonant frequency. In more complex resonators, the actuator-proof mass system is placed in an amplifier feedback circuit so that the electromechanical system self-resonates. MEMS parallel plate actuators (PPAs) are simple to realize, yet complex nonlinear variable capacitors. If a DC voltage is applied in attempt to move the proof mass greater than 1/3 of the electrode rest gap distance, the device becomes unstable and the electrodes snap into contact. A current limiting resistor is often placed in series with the PPA to limit short circuit current due to a snap-in event. Consider the effect of placing a large resistor, on the order on 10 meg-Ohms, in series with the PPA. Then apply a DC voltage across the resistor-PPA pair of sufficient voltage to cause snap-in. Once the electrostatic force (ES) exceeds the spring force (SF), the electrodes will accelerate toward each other. The capacitance between the electrodes swells as the separation distance shrinks. Since the large resistor limits the charging rate of the capacitor, the voltage across it drops. Once the SF exceeds the EF, the momentum of the movable electrode brings it into contact with the fixed electrode, discharging the capacitor. The movable electrode then accelerates away from the fixed electrode while the resistor slowly allows recharging. After recharging, the cycle repeats resulting in stable oscillation. This resonator requires only a DC power supply, a resistor and a MEMS PPA.


2019 ◽  
Vol 113 ◽  
pp. 03005
Author(s):  
Enrico Valditerra ◽  
Massimo Rivarolo ◽  
Aristide F. Massardo ◽  
Marco Gualco

Wind turbine installation worldwide has increased at unrested pace, as it represents a 100% clean energy with zero CO2 and pollutant emissions. However, visual and acoustic impact of wind turbines is still a drawback, in particular in urban areas. This paper focuses on the performance evaluation of an innovative horizontal axis ducted wind turbine, installed in the harbour of Genova (Italy) in 2018: the turbine was designed in order to minimize visual and acoustic impacts and maximize electrical energy production, also during low wind speed periods. The preliminary study and experimental analyses, performed by the authors in a previous study, showed promising results in terms of energy production, compared to a traditional generator ( factor >2.5 on power output). In the present paper, the test campaign on a scaled-up prototype, installed in the urban area of Genova, is performed, with a twofold objective: (i) comparison of the ducted innovative turbine with a standard one, in order to verify the increase in energy production; (ii) analysis of the innovative turbine for different wind speeds and directions, evaluating the influence of ambient conditions on performance. Finally, based on the obtained results, an improved setup is proposed for the ducted wind turbine, in order to further increase energy production mitigating its visual impact.


2019 ◽  
Vol 9 (22) ◽  
pp. 4951
Author(s):  
Wotzka ◽  
Błachowicz ◽  
Weisser

The article presents the results of experimental and theoretical works aimed at determining the distribution of heat emitted by an obstacle lighting lamp. These kind of lamps are commonly applied as a warning for air traffic vehicles. There is a need for lighting devices with various intensities, whose application depends on the location and operating conditions. The overall aim of the author’s work is to develop a computer model that would enable us to conduct research aimed at determining the optimal parameters of lamp operation without the need to build many physical models. Measurements of heat emitted by a currently manufactured lamp were made, and based on these, a numerical model of the lamp operating under laboratory conditions was developed. The considered lamp has two heat sources, one of which is light-emitting diodes (LEDs), while the other heat source consists of stabilizers and other elements of the lamp power supply system. After positive experimental verification of the numerical model, theoretical analyses of heat emission under various meteorological conditions were carried out, while the values of ambient temperature and airflow velocity were changed; then, the influence of these parameters on the temperature distribution on the surface of the lamp was determined.


Sign in / Sign up

Export Citation Format

Share Document