scholarly journals Energy greenhouse gas emission inventory in Batu City

2021 ◽  
Vol 916 (1) ◽  
pp. 012003
Author(s):  
K E Sari

Abstract The development of the tourism sector in Batu City is in line with the development of non-agricultural activities in Batu City that dominates 66.7% of Batu City’s land use pattern. This pattern is related to the energy demand in Batu City and contributes to the increasing GHG emissions from the energy sector. The energy sector contributes 24-25% of GHG emissions and it will increase along with further development of activities. The GHG emission inventory is an important step related to GHG emission reduction, and, due to the uncertainty of GHG emission distribution, the inventory was based on the sources of emission. The main purpose of this research is to make an inventory of the amount of GHG emission from the energy sector in Batu City from 3 main emission sources in Batu, namely transportation, commercial, and household. The analytical method used is the Tier 1 approach using a database of energy consumption and the number of activities as an emission source. The results show that the total amount of GHG emissions from the energy sector in Batu City is 2,562,159,822,007.89 kg/year with an average increase of 0.75% per year and is dominated by emission sources from the household sector. The average increase in GHG emissions from the transportation sector is 58.83% with a significant increase in 2015. In the commercial sector, the average annual increase in GHG emissions is 3.83%, and the household sector—as the largest energy consumer—has an average increase in GHG emissions each year of 0.75%.

2021 ◽  
Vol 894 (1) ◽  
pp. 012011
Author(s):  
Z D Nurfajrin ◽  
B Satiyawira

Abstract The Indonesian government has followed up the Paris Agreement with Law No. 16 of 2016 by setting an ambitious emission reduction target of 29% by 2030, and this figure could even increase to 41% if supported by international assistance. In line with this, mitigation efforts are carried out in the energy sector. Especially in the energy sector, it can have a significant impact when compared to other sectors due to an increase in energy demand, rapid economic growth, and an increase in living standards that will push the rate of emission growth in the energy sector up to 6. 7% per year. The bottom-up AIM/end-use energy model can select the technologies in the energy sector that are optimal in reducing emissions and costs as a long-term strategy in developing national low-carbon technology. This model can use the Marginal Abatement Cost (MAC) approach to evaluate the potential for GHG emission reductions by adding a certain amount of costs for each selected technology in the target year compared to the reference technology in the baseline scenario. In this study, three scenarios were used as mitigation actions, namely CM1, CM2, CM3. The Abatement Cost Curve tools with an assumed optimum tax value of 100 USD/ton CO2eq, in the highest GHG emission reduction potential, are in the CM3 scenario, which has the most significant reduction potential, and the mitigation costs are not much different from other scenarios. For example, PLTU – supercritical, which can reduce a significant GHG of 37.39 Mtoe CO2eq with an emission reduction cost of -23.66 $/Mtoe CO2eq.


2021 ◽  
Author(s):  
Filda C. Yusgiantoro ◽  
◽  
I Dewa Made Raditya Margenta ◽  
Haryanto Haryanto ◽  
Felicia Grace Utomo

1. This report shows that six G20 countries (Japan, South Africa, Argentina, France, Ireland, and Mexico) and one ASEAN Member States (Singapore) have implemented a carbon tax. 2. The energy sector is the primary GHG emissions contributor in most member states, except Indonesia. However, the energy sector in Indonesia will highly contribute to the national GHG emissions considering the rise of energy demand due to economic and population growth. 3. The effectiveness of carbon tax is specific to which sectors are taxed and which sectors are exempt to a country member. Specifically, a higher emissions price may not cover a large share of emissions in the country. The high carbon tax in France only covers 35% of total emissions in its jurisdiction. Meanwhile, Japan and Singapore’s low carbon tax covers 75% and 80% of total emissions in their jurisdiction, respectively. 4. The numbers of sectoral coverage by emissions price will impact the level of revenues generated from the carbon tax. France obtained the most significant carbon tax revenue for more than USD 9.6 billion. Meanwhile, Argentina generated less than USD 1 million, likely due to tax exemptions in natural gas commodities. 5. The contribution level of carbon tax revenue to the government’s total revenue varies for each country. France and Ireland’s carbon tax revenue contributes 0.71% and 0.53% of their total government revenue, respectively. Meanwhile, the rest of the countries’ carbon tax revenue contributed less than 0.3% each to their government revenue.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 689 ◽  
Author(s):  
She ◽  
Chung ◽  
Han

Harvesting mountain pine beetle-infested forest stands in the northern Colorado Rocky Mountains provides an opportunity to utilize otherwise wasted resources, generate net revenues, and minimize greenhouse gas (GHG) emissions. Timber and bioenergy production are commonly managed separately, and their integration is seldom considered. Yet, degraded wood and logging residues can provide a feedstock for bioenergy, while the sound wood from beetle-killed stands can still be used for traditional timber products. In addition, beneficial greenhouse gas emission (GHG) savings are often realized only by compromising net revenues during salvage harvest where beetle-killed wood has a relatively low market value and high harvesting cost. In this study we compared Sequential and Integrated decision-making scenarios for managing the supply chain from beetle-killed forest salvage operations. In the Sequential scenario, timber and bioenergy production was managed sequentially in two separate processes, where salvage harvest was conducted without considering influences on or from bioenergy production. Biomass availability was assessed next as an outcome from timber production managed to produce bioenergy products. In the Integrated scenario, timber and bioenergy production were managed jointly, where collective decisions were made regarding tree salvage harvest, residue treatment, and bioenergy product selection and production. We applied a multi-objective optimization approach to integrate the economic and environmental objectives of producing timber and bioenergy, and measured results by total net revenues and total net GHG emission savings, respectively. The optimization model results show that distinctively different decisions are made in selecting the harvesting system and residue treatment under the two scenarios. When the optimization is fully economic-oriented, 49.6% more forest areas are harvested under the Integrated scenario than the Sequential scenario, generating 12.3% more net revenues and 50.5% more net GHG emission savings. Comparison of modelled Pareto fronts also indicate the Integrated decision scenario provides more efficient trade-offs between the two objectives and performs better than the Sequential scenario in both objectives.


2020 ◽  
Vol 12 (19) ◽  
pp. 8214
Author(s):  
Toshiro Semba ◽  
Yuji Sakai ◽  
Miku Ishikawa ◽  
Atsushi Inaba

According to the Ellen MacArthur Foundation, 73% of used clothing is landfilled or incinerated globally and greenhouse gas (GHG) emissions from fabric manufacturing in 2015 amounted to 1.2 billion tons. It must be reduced in the future, especially by reusing and recycling used clothing. Based on this perspective, researchers calculated the energy consumption and GHG emissions associated with reusing and recycling used clothing globally with a life cycle assessment (LCA). However, no study was conducted so far to estimate the total GHG emission reductions in Japan by reusing and recycling used clothing. In this study, the amount of used clothing currently discharged from households as combustible and noncombustible waste and their fiber types were estimated using literature. Then, the methods for reusing and recycling of used clothing were categorized into the following 5 types based on fiber type, that is, “reuse overseas,” “textile recycling to wipers,” “fiber recycling,” “chemical recycling” and “thermal recycling.” After that, by applying LCA, the GHG emission reductions by above 5 methods were estimated, based on the annual discharged weights of each fiber type. Consequently, the total GHG emissions reductions by reusing and recycling 6.03 × 108 kg of used clothing totally were estimated around 6.60 × 109 kg CO2e, to range between 6.57 × 109 kg CO2e and 6.64 × 109 kg CO2e, which depended on the type of “chemical recycling.” The largest contribution was “reuse overseas,” which was 4.01 × 109 kg CO2e corresponded to approximately 60% of the total reduction. Where, it was assumed that used clothing were exported from Japan to Malaysia which was currently the largest importing country. In this case, GHG emissions to manufacture new clothing in China, the largest country currently to export them to Japan, can be avoided, which are 29.4 kg CO2e and 32.5 kg CO2e respectively for 1 kg jeans and 1 kg T-shirts. Adding the GHG emissions for overseas transportation to this, on average, 32.0 kg CO2e per kg of used clothing was reduced by “reuse overseas,” which was 19.6 times larger than GHG emissions by incineration, 1.63 kg CO2e per kg, in which carbon neutrality for cotton was not counted. As the result, the total GHG emission reductions above mentioned, around 6.60 × 109 kg CO2e, corresponds to 70% of the GHG emissions by incineration of total household garbage in Japan.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael Ayeah Israel ◽  
Joseph Amikuzuno ◽  
Gideon Danso-Abbeam

Abstract Background The adoption of climate-smart agricultural (CSA) practices is expected to improve farmers’ adaptation to climate change and also increase yields while simultaneously curbing greenhouse gas (GHG) emissions. This paper explores the determinants of smallholder farmers’ participation in GHG-emitting activities. It also estimates the impact of CSA activities on reducing GHG emissions. Methods The findings are based on survey data obtained from 350 smallholder farmers in the East Gonja district of Northern Ghana. We adopted the generalized Poisson regression model in identifying factors influencing farmers’ participation in the GHG emission practices and inverse-probability-weighted regression adjustment (IPWRA) to estimate the impact of CSA adoption on GHG emissions. Results Most farming households engaged in at least one emission activity. The findings of the generalized Poisson model found that wealthier households, higher education, and households with access to extension services were less likely to participate in GHG emission activities. There was also evidence that CSA adoption significantly reduces GHG emissions. Conclusion Advocacy in CSA adoption could be a necessary condition for environmental protection through the reduction of GHG emissions.


2021 ◽  
Vol 7 (1) ◽  
pp. 13-35
Author(s):  
Nima Norouzi ◽  
Mohammad Ali Dehghani

Taking Iran as the 7th Greenhouse Gas (GHG) emission source of the world, the country contains a high potential for the emission management plans and studies. As the economy is a significant factor in the greenhouse gas emission, studying the economy and GHG emission integrated relations must be taken into account of every climate change and environmental management plan. This paper investigates the relationships among the economic, demographic, foreign policies, and many other domestic and foreign parameters, which are illustrated by sixth Iranian document over development and GHG emission in three progress scenarios made for this plan. In this paper, all the significant GHG emissions such as CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, hydrocarbons, and CO in the period of 2014-2020 are being studied. As the results show, the number of emissions is directly related to domestic and foreign parameters, which means a better economic status in Iran causes an increase in the number of emissions. The foreign policies are more effective in the Iranian economy and emissions than the domestic policies and parameters. The scenarios and the results show that the Iranian economy and energy systems have a significant potential for efficiency development plans. However, one thing is clear that Iranian emissions will be increased to 800 million tons by the end of the plan period (by 2021). This significant increase in the amount indicates the importance of optimization and efficiency development plans in Iran, which is predicted to control and fix this increment around 3-4%.


2013 ◽  
Vol 50 (6) ◽  
pp. 16-25 ◽  
Author(s):  
I. Kudrenickis ◽  
G. Klavs

Abstract Utilisation of biomass is an important factor in reducing emission of greenhouse gases (GHG); at the same time, high efficiency of biomass combustion technologies is to be ensured to minimise the methane (CH4) emission thus achieving the most efficient reduction in the total GHG emission. The authors analyse the GHG emission breakdown in Latvia among the sectors not included in the EU Emissions Trading Scheme (ETS), and, in the context of emission reduction, evaluate the energy supply in the Latvian household sector, the types of combustion technologies and the used fuels. The trend is considered for the CH4 emission factor during 1990-2010 in the household sector of EU countries, and the numerical index is calculated which illustrates decoupling the consumption of biomass fuel from CH4 emission. To evaluate the perspective of CH4 emission reduction in the Latvian household sector, two scenarios are investigated for efficiency improvement as related to the central heating equipment based on wood fuel.


2015 ◽  
Vol 73 (1) ◽  
pp. 137-143 ◽  
Author(s):  
H.-T. Liu ◽  
X.-J. Kong ◽  
G.-D. Zheng ◽  
C.-C. Chen

Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS−1 (wet sludge).


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 392
Author(s):  
Elżbieta Wójcik-Gront

The vast majority of the scientific community believe that anthropogenic greenhouse gas (GHG) emissions are the predominant cause of climate change. One of the GHG emission sources is agriculture. Following the International Panel on Climate Change (IPCC) guidelines regarding GHG emission calculation, agriculture is responsible for around 10% of the overall global emissions. Agricultural GHG emissions consist of several emission source categories and several GHGs. In this article were described the results of multivariate statistical analyses performed on data gathered during the period 1990–2017 from the inventories of 43 Annex I countries (parties to the United Nations Framework Convention on Climate Change, UNFCCC, listed in Annex I of the Convention). Trends in the agricultural GHG emissions were analyzed. Generally, the global agricultural GHG emissions are increasing, while the emissions from Annex I countries are decreasing. Apart from the application of urea, emissions from all other sources, such as enteric fermentation, manure management, rice cultivation, agricultural soils, field burning of agricultural residues, and liming are decreasing. Based on multivariate analysis, the most different countries, in terms of GHG emission sources composition in agriculture and emission trends, are Australia, Japan, New Zealand and USA. The rest of the Annex I countries are mostly from Europe and their shares and trends are similar, with slight differences between countries depending, among others, on the date of joining the European Union.


Sign in / Sign up

Export Citation Format

Share Document