scholarly journals Utilization of Sea Water to Production of Concrete in Terms of Mechanical Behavior

2021 ◽  
Vol 921 (1) ◽  
pp. 012068
Author(s):  
Mansyur ◽  
A A Amiruddin ◽  
H Parung ◽  
M W Tjaronge ◽  
M Tumpu

Abstract Supplies of fresh water in everyday life has increased, but the smaller the potential sources of water so we need to think of alternative uses of water for concrete construction work. This study aims to compare the compressive strength of concrete using sea water and fresh water with water cement ratio of 0.37. An experimental research was conducted by making specimens of concrete cylinder with a diameter of 150 mm and height of 300 mm. The study used specimens of concrete using sea water and fresh water. There were 32 specimens for each kind of concrete. The treatment of each specimen used sea water and fresh water in accordance with the type of mixing water. The immersion periods were 1, 3, 7 and 28 days. Mechanical testing of concrete was conducted by testing the compressive strength and elasticity, while the testing of concrete microstructure was conducted by using X-Ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The results revealed that in the 28-day immersion period. The compressive strength values of the sea water concrete and fresh water concrete were 44.88 MPa and 44.03 Mpa respectively. The difference of compressive strength in the two types of concrete was not significant. The result of microstructure test in the 28-day period revealed that in the sea water concrete, there was a formation of Friedel’s salt (3CaO.Al2O3.CaCl2.10H2O) of 7.71%, tobemorite (3CaO.2SiO2.3H2O) of 58.66% and calcium hydroxide (Ca(OH)2) of 6.18%. In the fresh water concrete, there was a formation of tobermorite (3CaO.2SiO2.3H2O) of 51.35%, and calcium hydroxide (Ca(OH)2) of 22%. There was no formation of Friedel’s salt in the fresh water concrete because there was no mutual reaction between chloride and calcium hydroxide elements. From the regression analysis, showed that the difference of microstructure compressive strength differences caused by differences in the microstructure of the content of the two types of concrete.

2015 ◽  
Vol 1119 ◽  
pp. 647-651 ◽  
Author(s):  
Erniati ◽  
M.W. Tjaronge ◽  
Victor Sampebulu ◽  
Rudy Djamaluddin

In Indonesia, several regions have a minimum quantity or none of fresh water. Self Compacting Concrete (SCC) has a dense microstructure. Knowledge about the microstructure and properties of the individual components of concrete have a relationship that is useful for controlling the behavior of concrete. Porosity and microstructure SCC using sea water as mixing water and curing water discussed in this paper. The results showed the higher the compressive strength of SCC sea water is getting smaller porosity. Porosity on the SCC decreases with increasing quantities of microstructure phase tobermorite (CSH), portlandite (CH), Friedel's salt and ettringite.


2018 ◽  
Author(s):  
erniati ◽  
muhammad wihardi tjaronge ◽  
Rudy Djamaluddin ◽  
Victor Sampebulu

Indonesia is an archipelagic country which makes many areas doesn’t have qualified water as drinking water. As concrete construction building in the region has possibly minimum or non-existent amount of fresh water, the using of sea water in mixing concrete and curing concrete is unavoidable. The demand of water is getting more and more increasing in both the improvement of infrastructure development and the life need. In the concrete industry, several billion tons of water is used as water mixing, curing and cleaning every year. Therefore the use of sea water is not allowed. In fact, we know that seawater is one of the abundant natural resources. Due to this problem, the research on the use of sea water is very important owing to the saving of freshwater is seriously needed. This study uses sea water by combining effective and efficient concrete technology of Self Compacting Concrete (SCC). This paper is a part of ongoing research studying about microstructure characteristics and the strength of SCC using sea water. It discusses about the compressive strength, absorption and porosity as microstructure characteristics of SCC until the age of 28 days. The results are: (1) the seawater used as mixing water did not affect the development of the compressive strength of concrete, (2) the difference compressive strength of SCC-SS with SCC-FF at an early age is very high occurred at ages 1 and 3 days and (3) The higher the compressive strength value is, the smaller the absorption and porosity is in concrete.


2020 ◽  
Vol 6 (6) ◽  
pp. 1195-1203
Author(s):  
Mansyur Mansyur ◽  
Dian Permana

The development of infrastructure in archipelago countries often faces difficulties and challenges due to the lack of fresh water. Hence, in some cases, the usage of seawater is favourable, in particular for concrete making. Little studies have been conducted on comparing the seawater, and freshwater concretes, especially on microstructure analysis. The objective of this study was to reveal the compressive strength, elasticity, and microstructure of concrete using seawater and freshwater as the mixing water. The methodology of this study was mix design, making test specimens, curing test specimens, and microstructure analysis. The tests of concretes were conducted for each sample with variations of 1, 3, 7, and 28 days and the mechanical behavior were tested using compressive strength and elasticity as parameters. At the same time, the microstructure was examined using an X-Ray Diffraction (XRD). The results showed an increase in compressive strength and elasticity of seawater and freshwater concretes at all variations with insignificant differences observed between the two types of concretes. It was also discovered that the formation of Friedel's salt (3CaO.Al2O3.CaCl2.10H2O) in the seawater concrete was not in the freshwater concrete. In conclusion, the differentiation of microstructure did not significantly affect the compressive strength and elasticity between seawater and freshwater in mixing concrete.


2017 ◽  
Vol 2 (12) ◽  
pp. 623 ◽  
Author(s):  
Hamid Shahrabadi ◽  
Sina Sayareh ◽  
Hamed Sarkardeh

Oil pollution into the concrete composed materials, leads to decrease the compressive strength of the constructed structure. In the present study, effect of using a natural pozzolan named Zeolite on concrete structures was tested in different marine conditions. A fixed amount of oil equal to 2% of sand weight was added as the pollution into the concrete composed materials. Natural Zeolite was added into the concrete instead of cement to the mix design with weight percentages of 10, 15 and 20. After preparing and curing, concrete specimens were placed into the three different conditions: fresh water, tidal, and sea water environments. Results of compressive strength tests showed that replacement of natural Zeolite instead of cement significantly increased compressive strength in comparison with control specimens, in all environments. Adding 20% natural Zeolite increased the compressive strength to its highest values about 60-85% higher than control specimens.


2018 ◽  
Author(s):  
Erniati Bachtiar

The number of problems found in the construction world includes the difficulty or lack of fresh water in some areas to be mixed in the concrete, negligence in the maintenance of concrete and working process of concrete mainly on the concrete structures have a complex reinforcement and high concrete building structures. This study aims to find out the compressive strength, splitting tensile strength, absorption, and porosity of Self Compacting Concrete (SCC) using sea water as mixing water and with or without curing in sea water. The test specimens were made for each test specimen withthe variation on age 1 day, 3 days, 7 days, 28 days and 90 days. The test method of compressive strength according to ASTM 39/C 39M-12a standard, tensile strength according to ASTM C496 / C496M-11 standard and the porosity and absorption according to ASTM C642-13 standard. The result of research was 1) the decrease in compressive strength in the specimen SCC-SWC was from 3 days, 7 days, 28 days and 90 days consecutive 13.20%, 12.90%, 12.80%, and 12.50%; 2) the decreases in splitting tensile strength in the specimen SCC-SWC were from the age of 3 days, 7 days, 28 days until the age of 90 days consecutive by 3.10%, 8.05%, 9.51%, and 9.21%; 3) the increase in the porosity values on the specimenSCC seawater without cured in sea water (SCC-SWC) at age 3 days, 7 days, 28 days and 90 days was 2.86%, 7.90%,5.86%, and 5.55%, respectively; 4) the increase in the absorption values on the specimen SCC without curing at 3 days, 7 days, 28 days and 90 days was 15.80%, 20.57%, 15.84%, and 30.80%, respectively. The increase in mechanical properties (compressive strength and tensile strength) in the both of the specimen SCC-SC and SCC-SWC along with the decrease of porosity and absorption. Conversely, the decrease of compressive strength and tensile strength in the both of the specimen SCC-SC and SCC-SWC along with the increase in porosity and absorption value in the SCC


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Rayed Alyousef ◽  
Omrane Benjeddou ◽  
Mohamed Amine Khadimallah ◽  
Abdeliazim Mustafa Mohamed ◽  
Chokri Soussi

The marble powder (MP), obtained from waste sludge marble processing, has a high specific surface area; this could mean that it can be used as filler added to self-compacting concrete (SCC). The aim of this experimental work is to study the effects of the cement-MP paste volume on the rheology in the fresh state and the hardened properties (compressive strength) of SCC by a microstructure analysis on paste samples with different amounts of MP. For all pastes, the morphological forms and the chemical composition of the main mineral components were analyzed by the scanning electron microscope (SEM) and X-ray diffraction (XRD). The hydration, microstructure, and mineralogical changes has been studied. Experimental results show that the cement-MP paste volume has significant effects on the self-compacting and the self-leveling properties in the fresh state of SCC. In addition, the paste volume has a significant contribution on the compressive strength of SCC. Results indicate also that the difference in chemical composition between MP and cement have not any contribution on the paste volume effects.


2018 ◽  
Author(s):  
erniati ◽  
muhammad wihardi tjaronge ◽  
Rudy Djamaluddin ◽  
Victor Sampebulu

In the cycle of life, the needs of freshwater more and more. Infrastructure development is increasing. On the concrete industry, several billion tones of water used in earth as mixing water, treatment water (curing) and cleaner water every year, where using of sea water is obstructed. For that, the using of sea water which consists of 97% of the total water on earth is absolutelynecessary. Self-compacting concrete (SCC) has dense microstructure. Knowledge about the microstructure and properties of each component a concrete and their relationship is useful to control the behavior. This research aims to know the relationship between compressive strength and microstructure characteristics of Self Compacting Concrete which using seawater up to the age of 90 days. The results of this study were the compressive strength of SCC using sea water is higher than the SCC using fresh water. Seawater does not reduce the strength of SCC concrete until the age of 90 days, but instead of Seawater is accelerating the development of SCC concrete strength at an early age. The compressive strength of concrete SCC is influenced by the phase microstructure (especially with tobermorite and portlandite) formed in the concrete.


Author(s):  
M. Yudelman

The world’s supply of water is fixed. It is estimated that 97% of the world’s water exists in the oceans, 2.2% exists as ice and snow, mostly in the polar regions, and only about 0.7% of the total supply is the freshwater that sustains mankind, including the global agricultural system. This quantity of freshwater — around 40,500 km3 — which is the difference between precipitation and evapotranspiration, is continuously replenished by nature’s hydrological cycle. Most climatologists and hydrologists agree that there is no natural process short of climate change, especially global warming, that can increase the world’s rainfall and so the supply of freshwater. The greater the warming, the larger the expected increase in precipitation. One “simple level of analysis” suggests that global warming of 30° C could well lead to a 10% increase in evaporation and an average increase in precipitation of 10%. The biggest increases would be at high latitudes, smaller increases would occur close to the equator (Gleick, 1992). The weight of evidence suggests that this is unlikely to happen within the next several decades (Rosenzweig, 1994). It is an open question, though, as to what might happen in the second half of the next century. There are some manmade processes that can increase the supply of fresh water. One of the most important of these is the conversion of saline water from the ocean into fresh water by removing salt through desalinization or by filtration. Thus far, however, the processes that have been developed are highly energy intensive and costly; the plants presently in operation are mostly in the oil-rich, water-poor nations of the Persian Gulf. It is estimated that there are more than 11,000 desalting plants operating worldwide, but together they produce less than 0.2% of the world’s total fresh water (Postel, 1991). The costs of desalting sea water range currently from about $0.80 to $1.60 m-3, and costs of treating brackish water are about $0.30 m -3, well above the costs of fresh water used for irrigation (Wolf, 1996).


1992 ◽  
Vol 6 ◽  
pp. 171-171
Author(s):  
Yehoshua Kolodny ◽  
Boaz Luz

The isotopic composition of oxygen in the phosphate (δ18Op)was determined in 159 fish bones and teeth from museum collections throughout the world. The fossils were both marine and fresh-water ranging in age from the Devonian to the Recent. In 45 of those we also determined the isotopic composition of oxygen and carbon of the lattice carbonate in apatite (δ18Oc and δ13C). In most cases the isotopic results are compatible with previously available geological information: the difference between marine and fresh water, the indication of previously known warm and cold time periods, and the ranking of fishes from warm to cold according to their inferred life habitat.Three fish specimen from the Devonian of the Orcadian Basin in Scotland yield results which are compatible with the thermal structure of a stratified lake. The isotopic analysis of Inocentrus vulgaris, a fish found inside Cretaceous inoceramids, yields normal marine δ18Op. Hence we favor the suggestion of Tourtelot and Rye (1969) that 18O depleted inoceramids did not deposit their shells in isotopic equilibrium with sea water.The relationship between δ18Op and δ18Oc suggests early diagenetic replacement of an originally phosphatic phase by carbonate fluor apatite (CFA). This conclusion is in accord with REE studies of fish fossils. The correlated latitudinal variation in δ18O of meteoric water and temperature should result in a small variation of δ18Op in fresh water fish. The large range in δ18Op of Recent fish is the outcome the “altitude effect” (Dansgaard, 1964) i.e. of the existence of Recent high altitudes, and sharp morphological gradients.


Sign in / Sign up

Export Citation Format

Share Document