scholarly journals Country-specific emission factor for developing a tier 3 system of Indonesia’s seagrass carbon inventory

2021 ◽  
Vol 944 (1) ◽  
pp. 012058
Author(s):  
A J Wahyudi ◽  
F Febriani

Abstract Climate action regarding carbon inventory requires baseline assessment, data regarding annual changes, and evaluation of reductions in carbon emissions. However, many studies of seagrass ecosystems have focused only on carbon stock and sequestration, neglecting the importance of the carbon emission factor. It is known that emission factors for land-use change, including those in seagrass ecosystems, can be derived from biomass and sediment carbon stock. Since currently Indonesia only has data for biomass carbon stock, we propose the measurement of province-based emission factors. This study combines the available carbon stock data reported in national or international publications and conducts a meta-analysis to obtain emission factor values. The results show that the biomass standing carbon stock of Indonesia’s seagrass meadows ranges from 0.30 tC/ha (i.e., Special Region of Yogyakarta) to 16.51 tC/ha (i.e., Gorontalo province), while emission factor ranges from 0.012 tC/ha/yr to 0.661 tC/ha/yr (equal to 0.05 t CO2/ha/yr to 2.42 t CO2/ha/yr). These findings will be beneficial for developing Tier 3 carbon inventory since they allow country-specific emission factor for the seagrass ecosystem to be measured.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Seehyung Lee ◽  
Jinsu Kim ◽  
Jeongwoo Lee ◽  
Eui-Chan Jeon

In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea’s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases from circulating fluidized bed plant. The findings showed the concentration of CH4and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 737 ◽  
Author(s):  
Marius Aleinikovas ◽  
Gediminas Jasinevičius ◽  
Mindaugas Škėma ◽  
Lina Beniušienė ◽  
Benas Šilinskas ◽  
...  

Forests and the forest-based sector play important roles in mitigating climate change through carbon sequestration and storage in living biomass and soil. In Europe, the forest sector is the only sector that positively affects atmospheric carbon balance. After the forest harvest, a large share of carbon is removed together with the wood. This wood carbon might be stored for centuries if in the form of long-lived wood products. In 2011, the United Nations decided that countries should account for and report carbon balance not only in forests but also in harvested wood products (HWP), followed by very general guidelines on methods for carbon accounting in HWP. The Intergovernmental Panel on Climate Change (IPCC) proposed three methodological levels called tiers for estimating carbon stock and its changes in HWP. The first reporting period revealed that countries applied different carbon accounting methods (tiers), therefore comparing the carbon budgets of HWP and the effect of climate change mitigation among different countries is difficult. In order to test the differences between carbon accounting methods proposed by the IPCC guidelines, we applied two carbon accounting methods and used different data sources in the case of Lithuania. The methods applied were the IPCC Tier 2 method (data on HWP from statistics or the literature, default half-life values, and default HWP categories) and material flow analysis, which is compatible with the IPCC Tier 3 method (material flow data on HWP, country-specific half-life values, and country-specific HWP categories). Depending on the availability of historical data from different sources for the purpose of this study, three study periods were defined: 1992–2015 Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) data, 1960–1991 data from the literature, and 1940–1991 data from national statistics. The study findings show that carbon stock in HWP significantly differed when different data sources and methods were applied. The highest carbon stock in HWP (19.5 Mt) at the end of the study period was observed when FAOSTAT data from 1992–2015 were used and the Tier 3 method was applied. The lowest carbon stock in HWP (11.2 Mt) at the end of the study period was observed when data from national statistics from 1940–1991 were used and the Tier 2 method was applied. The carbon inflow into the pool of HWP in all cases was estimated to be 40% higher when material flow analysis was applied compared to the IPCC default (Tier 2) method. These findings suggest that in general it is more reasonable to apply the Tier 3 method for carbon accounting of HWP in Lithuania.


2021 ◽  
Vol 13 (4) ◽  
pp. 2197
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

NH3 is one of the major substances contributing to the secondary generation of PM2.5; therefore, management is required. In Korea, the management of NH3 is insufficient, and the emission factor used by EPA is the same as the one used when calculating emissions. In particular, waste incineration facilities do not currently calculate NH3 emissions. In the case of combustion facilities, the main ammonia emission source is the De-NOx facility, and, in the case of a power plant with a De-NOx facility, NH3 emission is calculated. Therefore, in the case of a Municipal Solid Waste (MSW) incinerator with the same facility installed, it is necessary to calculate NH3 emissions. In this study, the necessity of developing NH3 emission factors for an MSW incinerator and calculating emission was analyzed. In addition, elements to be considered when developing emission factors were analyzed. The study found that the NH3 emission factors for each MSW incinerator technology were calculated as Stoker 0.010 NH3 kg/ton and Fluidized Beds 0.004 NH3 kg/ton, which was greater than the NH3 emission factor 0.003 NH3 kg/ton for the MSW incinerator presented in EMEP/EEA (2016). As a result, it was able to identify the need for the development of NH3 emission factors in MSW incinerators in Korea. In addition, the statistical analysis of the difference between the incineration technology of MSW and the NH3 emission factor by the De-NOx facility showed a difference in terms of both incineration technology and De-NOx facilities, indicating that they should be considered together when developing the emission factor. In addition to MSW, it is believed that it will be necessary to review the development of emission factors for waste at workplaces and incineration facilities of sewage sludge.


2020 ◽  
Vol 7 (4) ◽  
pp. 169-174
Author(s):  
Chatragadda Ramesh ◽  
Raju Mohanraju

Seagrasses are unique marine flowering plants that play an important ecological role by yielding primary production and carbon sequestration to the marine environment. Seagrass ecosystems are rich in organic matter, supporting the growth of bio-medically important epi and endophytic microorganisms and harbor rich marine biodiversity. They are an essential food source for endangered Andaman state animal Dugongs. Seagrasses are very sensitive to water quality changes, and therefore they serve as ecological bio-indicators for environmental changes. The benthic components in and around the seagrass beds support a significant food chain for other Micro and organisms apart from fishery resources. The epiphytic bacterial communities of the leaf blades support the sustenance against the diseases. Recent reports have shown that the loss of seagrass beds in tropical and temperate regions emphasizes the depletion of these resources, and proper management of seagrass is urgent. The decline of seagrass will impact primary production, biodiversity, and adjacent ecosystems, such as reefs. Therefore, restoring the seagrass meadows could be possible with effective implementing management programs, including seagrass meadows in marine protected areas, restoration projects, seagrass transplantation, implementation of legislative rules, monitoring coastal water quality and human activities in the coastal zone. Lacunas on the seagrass ecosystem management in Andaman & Nicobar Islands are addressed.


2008 ◽  
Vol 5 (5) ◽  
pp. 1215-1226 ◽  
Author(s):  
D. Weymann ◽  
R. Well ◽  
H. Flessa ◽  
C. von der Heide ◽  
M. Deurer ◽  
...  

Abstract. We investigated the dynamics of denitrification and nitrous oxide (N2O) accumulation in 4 nitrate (NO−3) contaminated denitrifying sand and gravel aquifers of northern Germany (Fuhrberg, Sulingen, Thülsfelde and Göttingen) to quantify their potential N2O emission and to evaluate existing concepts of N2O emission factors. Excess N2 – N2 produced by denitrification – was determined by using the argon (Ar) concentration in groundwater as a natural inert tracer, assuming that this noble gas functions as a stable component and does not change during denitrification. Furthermore, initial NO−3 concentrations (NO−3 that enters the groundwater) were derived from excess N2 and actual NO−3 concentrations in groundwater in order to determine potential indirect N2O emissions as a function of the N input. Median concentrations of N2O and excess N2 ranged from 3 to 89 μg N L−1 and from 3 to 10 mg N L−1, respectively. Reaction progress (RP) of denitrification was determined as the ratio between products (N2O-N + excess N2) and starting material (initial NO−3 concentration) of the process, characterizing the different stages of denitrification. N2O concentrations were lowest at RP close to 0 and RP close to 1 but relatively high at a RP between 0.2 and 0.6. For the first time, we report groundwater N2O emission factors consisting of the ratio between N2O-N and initial NO−3-N concentrations (EF1). In addition, we determined a groundwater emission factor (EF2) using a previous concept consisting of the ratio between N2O-N and actual NO−3-N concentrations. Depending on RP, EF(1) resulted in smaller values compared to EF(2), demonstrating (i) the relevance of NO−3 consumption and consequently (ii) the need to take initial NO−3-N concentrations into account. In general, both evaluated emission factors were highly variable within and among the aquifers. The site medians ranged between 0.00043–0.00438 for EF(1) and 0.00092–0.01801 for EF(2), respectively. For the aquifers of Fuhrberg and Sulingen, we found EF(1) median values which are close to the 2006 IPCC default value of 0.0025. In contrast, we determined significant lower EF values for the aquifers of Thülsfelde and Göttingen. Summing the results up, our study supports the substantial downward revision of the IPCC default EF5-g from 0.015 (1997) to 0.0025 (2006).


2020 ◽  
Vol 67 (4) ◽  
Author(s):  
P. Kaladharan ◽  
P.U. Zacharia ◽  
S. Thirumalaiselvan ◽  
A. Anasukoya ◽  
Lavanya Ratheesh ◽  
...  

Blue carbon stock of the seagrass meadows of Gulf of Mannar and Palk Bay, off Coromandel Coast, south India, were computed from the organic carbon content and dry bulk densities of sediment core taken from the seagrass meadows of these two ecosystems. The Gulf of Mannar (GoM) and Palk Bay (PB) harbour 13 seagrass species dominated by Cymodocea serrulata and Syringodium isoetifolium. The soil carbon density of both GoM and PB were higher in subsurface cores. The blue carbon stock of seagrass meadows of the GoM was estimated as 0.001782 Tg and that of PB as 0.043996 Tg. The estimated value of blue carbon stored in seagrass meadows of GoM was 17820 US$ and that of PB was 43,99,682 US$. The results of this study are discussed in the light of climate change mitigation, emphasising the need to conserve these underwater meadows.


2018 ◽  
Vol 12 (2) ◽  
pp. 35-44
Author(s):  
Sania Prisilia ◽  
Wahyu Adi ◽  
Arief Febrianto

Seagrass beds have a variety of roles in fish life, which can be used as nurseries, as a place for feeding ground, and for areas to seek protection. This study aims to analyze the structure of fish communities and seagrass communities and analyze the relationship of fish abundance with seagrass ecosystems. This research was conducted in March 2018 on the beach of Puding Air Banten II, Pasir Putih Village, Tukak Sadai District, Bangka Selatan Regency. Line transect method for seagrass data collection and fish data retrieval using fixed gill nets (gill net). The results of the study found that the total number of individual fish as much as 409 ind / m2 consisted of 25 species. The highest abundance of fish found in Station I with Ambassis interrupta species as many as 241 ind / m2. There were six types of seagrass found on the coast of Puding, namely Enhalus acoroides, Thalassia hemprichii, Halodule uninervis, Halophila spinulosa, Halophila decipiens and Cymodocea serrulata. The highest seagrass density was found at Station I with the seagrass Halodule uninervis species of 2541 ind / m2. Correlation coefficient analysis shows that the abundance of fish with seagrass density has a significant value of 0.956 which is classified as having a very strong relationship. Fish have higher abundance with seagrass meadows which vegetate with mangroves


Author(s):  
Yaqing Gao ◽  
Yinping Wang ◽  
Xiaoyi Mi ◽  
Mo Zhou ◽  
Siyu Zou ◽  
...  

Intimate partner violence (IPV) against women is a major public health problem and is widespread in sub-Saharan Africa (SSA). However, little is known about its environmental determinants. This study aimed to investigate whether inadequate living conditions are associated with IPV victimization in women in SSA. We analyzed cross-sectional data for 102,714 women in 25 SSA countries obtained from the Demographic and Health Surveys Program. Logistic regression was used to estimate the country-specific effects of inadequate living conditions (housing with at least one of four characteristics of unimproved water, unimproved sanitation, insufficient space, and unfinished materials) on multiple forms of IPV. Random effects meta-analysis was used to combined the country-specific estimates. We found an association between inadequate living conditions and a higher likelihood of experiencing any (OR = 1.12, 95% CI 1.03 to 1.23, p = 0.012), sexual (OR = 1.18, 95% CI 1.05 to 1.34, p = 0.008), emotional (OR = 1.12, 95% CI 1.02 to 1.23, p = 0.023), and physical (OR = 1.15, 95% CI 1.03 to 1.28, p = 0.010) IPV. The associations were stronger for rural and less-educated women. These findings suggest that future research to establish a causal link between living conditions and IPV and to elucidate the underlying pathways is crucial to design IPV interventions in SSA.


2018 ◽  
Vol 61 (5) ◽  
pp. 429-440 ◽  
Author(s):  
Milica Stankovic ◽  
Naruemon Tantipisanuh ◽  
Anchana Prathep

Abstract Seagrass ecosystems are important contributors to mitigation of climate change, since they are responsible for large carbon sinks. However, there is limited knowledge regarding the importance of variability of carbon storage in various ecosystems. In this study, we estimated carbon storage in several structurally different seagrass meadows along the west coast of Thailand and determined whether degree of exposure, human disturbance, and meadow type influenced carbon storage within these meadows. Carbon content within the living vegetation was on average 3±2.7 Mg ha−1, whilst average storage of carbon in the sediment was 122±35.3 Mg ha−1. Meadow type and disturbance had a significant influence on total carbon storage in the ecosystem, while the degree of exposure of the bay did not show great differences. Uniform meadows had a higher average total carbon storage than mixed meadows (133±36.2 and 110±41.3 Mg ha−1, respectively). Undisturbed meadows had a higher average total carbon storage than disturbed ones (140±36.5 and 103±34.8 Mg ha−1, respectively). The results obtained contribute to our understanding of carbon storage on an ecosystem scale and can provide a baseline for proper management, conservation, and climate change studies in the region.


2015 ◽  
Vol 29 (4) ◽  
pp. 397-415 ◽  
Author(s):  
Toshihiro Miyajima ◽  
Masakazu Hori ◽  
Masami Hamaguchi ◽  
Hiromori Shimabukuro ◽  
Hiroshi Adachi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document