scholarly journals Optimization Of Thermal Module Solar Photovoltaic Using CFD-Simulation

2022 ◽  
Vol 961 (1) ◽  
pp. 012092
Author(s):  
Hussein M. Hamad ◽  
Soran J. Mohammed ◽  
M. F. Jabbar

Abstract Photovoltaic panels can directly generate electricity by converting solar energy, but the panels temperature reduce the efficiency of photovoltaic cells. The photovoltaic thermal PVT system technology is used to improve the electrical performance. In this study, the daily and monthly global solar radiation on a horizontal surface for Iraq have been measured and presented then used with PVT water system. ANSYS software is used to simulate the water temperature differences behavior and measure the surface temperature of PVT model using the collected irradiation with the mass flow rate at 0.01 and 0.02 kg per second. The CFID results were validated with previous studies and observed a good agreement. The simulation tests apply a constant input temperature to the PVT system in all the yearly weather conditions in order to enhance the surface temperature. The results observe the PVT thermal efficiency behavior and show the maximum enhancement which is reached to 61% with the mass flowrate 0.03 kg per second and constant low input temperature.

Author(s):  
Parshva Salot

This paper consists analysis on performance enhancement of solar photovoltaic cell by using reflecting and cooling system. The performance of PV (photovoltaic) module is strongly dependent on its surface temperature and solar radiation strikes on PV panel. It is necessary to study possible way for maintaining the appropriate temperature for solar panels and make system that will help to strikes maximum solar radiation on panel. High solar radiation and ambient temperature lead to an elevated photovoltaic cell operating temperature, which affects its lifespan and power output adversely. To enhance the electrical performance of the PV module we make one system which consists of two mirrors as a reflector placing beside solar panel and cooling system consists of pipe placed on upper area of solar panel. At time of sunrise and sunset low solar radiation is fall on solar panel, so reflecting system increase the intensity of solar radiation fall on solar panel. At noon time or afternoon the temperature of solar panel is increases it will decrease the efficiency of solar panel to minimize that cooling system is introduced that controlled the surface temperature.


2021 ◽  
Author(s):  
Srimanickam Baskaran ◽  
Christopher Sathiya Satchi ◽  
Saranya Amirtharajan ◽  
Metilda Manuel Swami Durai

Abstract Increasing surface temperature significantly affects the electrical performance of photovoltaic (PV) panels. A closed-loop forced circulation serpentine tube design of cooling water system is used to effectively manage the surface temperature of PV panels. A real-time experiment was first carried out with a PV panel with a cooling system at HTF flow rates of 60 kg h-1, 120 kg h-1, and 180 kg h-1. Based on the experimentation, a correlation for a nominal operating cell temperature (NOCT) and thermal efficiency for collector was developed for experimental validation of useful energy gained, cell temperature and electric power generation. The developed corrections are validated with electrical power and useful energy gained in photovoltaic serpentine thermal solar collector (PV/STSC) and fit into experimental results with a deviation of 1% and 2.5 % respectively. Further, with the help of developed correlations, a system was developed in the TRNSYS tool through which an optimization study was performed based on electric and hot water demand. The findings indicate that an optimal system with an 8 m2 PV/STSC area, a HTF flow rate of 60 kg h-1, and TES system having a volume and height of 280 l and 0.8 m could meet 91 % and 33 % of the hot water demand for Ac loads and 78 % or DC loads, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mardy Huot ◽  
Laveet Kumar ◽  
Jeyraj Selvaraj ◽  
Md Hasanuzzaman ◽  
Nasrudin Abd Rahim

Solar photovoltaic (PV) converts sunlight into electricity and is an appropriate alternative to overcome the depletion of conventional fuels and global warming issues. The performance of a PV panel may vary with respect to PV cell technology, fabrication methods, and operating conditions. This research aims at performing an experimental study to investigate the electrical performance of novel tempered glass-based PV panels using two different types of solar cells: monocrystalline and polycrystalline. Tempered glass-based panels are modified forms of commercial PV panels, in which ethylene-vinyl acetate (EVA) and Tedlar are not utilized. This new fabrication method was carried out in this research. Real-time data recordings regarding the PV electrical characteristics ( I - V curve) and solar irradiance were conducted under Malaysian weather conditions on clear sunny days. Results indicated that, at solar irradiance of 900 W/m2, the outputs from the fabricated polycrystalline and monocrystalline PV panels were 67.4 W and 75.67 W, respectively. However, at the highest average solar irradiance (634.61 W/m2), which was obtained at 12:30 PM, the outputs from both panels were 47.87 W and 54.89 W. An I - V curve was obtained for the real-time weather. The electrical efficiencies of the two PV panels were analyzed to be 10.54% and 12.23%.


Author(s):  
Jie Zhang ◽  
Qidong Wang ◽  
Han Zhang ◽  
Min Zhang ◽  
Jianwei Lin

Abstract In this study, a systematic optimization method for the thermal management problem of passenger vehicle was proposed. This article addressed the problem of the drive shaft sheath surface temperature exceeded allowable value. Initially, the causes and initial measures of the thermal problem were studied through computational fluid dynamics (CFD) simulation. Furthermore, the key measures and the relevant parameters were determined through Taguchi method and significance analysis. A prediction model between the parameters and optimization objective was built by radial basis function neural network (RBFNN). Finally, the prediction model and particle swarm optimization (PSO) algorithm were combined to calculate the optimal solution, and the optimal solution was selected for simulation and experiment verification. Experiment results indicated that this method reduced the drive shaft sheath surface temperature promptly, the decreasing amplitude was 22%, which was met the experimental requirements.


2016 ◽  
Vol 9 (2) ◽  
pp. 158-166
Author(s):  
Ardak Akhatova ◽  
Assylan Kassymov ◽  
Meruyert Kazmaganbetova ◽  
Luis Ramon Rojas-Solórzano

The aim of this paper is to consider one of the most traffic-loaded regions of Astana city (Kazakhstan) and to determine the concentration of carbon-monoxide (CO) in the air during the peak hours. CFD analysis based on the SolidWorks-EFD platform was used to simulate the dispersion of contaminants given the estimated emission rates and weather conditions at the crossroad of Bogenbay Batyr and Zhenis Avenues in Astana. Turbulence prediction was based on k-ε model with wall functions. The governing equations were discretized using the finite volume method and a 2nd order spatial scheme. The mesh verification was based on 1% convergence criterion for a 50% of mesh density increment; air pressure near the wall of a selected building was chosen as the parameter to control the convergence. Numerical results are presented for prevailing conditions during all 4 seasons of the year, demonstrating that the highest levels of CO are recorded in summer and reach the values up to 11.2 ppm which are still lower than the maximum level admitted for humans. Nevertheless, obtained results show that Astana is gradually becoming a city that is likely to reach the critical levels of pollutants in the nearest future if control measures are not taken with enough anticipation. As for a future work, it is proposed to perform in-situ validation of specific scenarios to check and support the results obtained with CFD and to develop then specific policies for tackling the problem before it becomes evident.


2004 ◽  
Vol 31 (2) ◽  
pp. 369-378 ◽  
Author(s):  
Aly Sherif ◽  
Yasser Hassan

Road and highway maintenance is vital for the safety of citizens and for enabling emergency and security services to perform their essential functions. Accumulation of snow and (or) ice on the pavement surface during the wintertime substantially increases the risk of road crashes and can have negative impact on the economy of the region. Recently, road maintenance engineers have used pavement surface temperature as a guide to the application of deicers. Stations for road weather information systems (RWIS) have been installed across Europe and North America to collect data that can be used to predict weather conditions such as air temperature. Modelling pavement surface temperature as a function of such weather conditions (air temperature, dew point, relative humidity, and wind speed) can provide an additional component that is essential for winter maintenance operations. This paper uses data collected by RWIS stations at the City of Ottawa to device a procedure that maximizes the use of a data batch containing complete, partially complete, and unusable data and to study the relationship between the pavement surface temperature and weather variables. Statistical models were developed, where stepwise regression was first applied to eliminate those variables whose estimated coefficients are not statistically significant. The remaining variables were further examined according to their contribution to the criterion of best fit and their physical relationships to each other to eliminate multicollinearities. The models were further corrected for the autocorrelation in their error structures. The final version of the developed models may then be used as a part of the decision-making process for winter maintenance operations.Key words: winter maintenance, pavement temperature, statistical modelling, RWIS.


Author(s):  
Santosh S. Raghuwanshi ◽  
Vikas Khare

<p>Solar photovoltaic systems convert energy of light directly into electrical<br />energy. This work presents, a process to compute the required size of the<br />stand-alone solar photovoltaic generator based water pumping system<br />for an existing area. In addition solar photovoltaic generator is<br />connecting voltage source inverter fed vector controlled induction<br />motor-pump system. Perturb and observe are used for harvesting<br />maximum power of PV generator in between buck-boost DC converter<br />and inverter system. In this paper system result is validated by fuzzy<br />logic system and compare with variable frequency drives based PI<br />controllers, driving motor-pump system. The operational performance<br />at 60 m head, VFD based controllers in terms overshoot and setting time<br />and also analysis performance of motor-pump set under different<br />weather conditions. By assessment of system we find that speed and<br />torque variation, overshoot and settling time is more with PI controller,<br />Fuzzy logic controller (FLC) performance have dominance to VFD<br />based PI controller.</p>


Baltica ◽  
2018 ◽  
Vol 30 (2) ◽  
pp. 75-85 ◽  
Author(s):  
Viktorija Rukšėnienė ◽  
Inga Dailidienė ◽  
Loreta Kelpšaitė-Rimkienė ◽  
Tarmo Soomere

This study focuses on time scales and spatial variations of interrelations between average weather conditions and sea surface temperature (SST), and long-term changes in the SST in south-eastern Baltic Sea. The analysis relies on SST samples measured in situ four times a year in up to 17 open sea monitoring stations in Lithuanian waters in 1960–2015. A joint application of non-metric multi-dimensional scaling and cluster analysis reveals four distinct SST regimes and associated sub-regions in the study area. The increase in SST has occurred during both winter and summer seasons in 1960–2015 whereas the switch from relatively warm summer to colder autumn temperatures has been shifted by 4–6 weeks over this time in all sub-regions. The annual average air temperature and SST have increased by 0.03°C yr–1 and 0.02°C yr–1, respectively, from 1960 till 2015. These data are compared with air temperatures measured in coastal meteorological stations and averaged over time intervals from 1 to 9 weeks. Statistically significant positive correlation exists between the SST and the average air temperature. This correlation is strongest for the averaging interval of 35 days.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Hussein Safwat Hasan ◽  
Humor Hwang

In the realm of technological market penetration of solar photovoltaiclouvers (PVL) addressing environmental difficulties and the industrialrevolution, a new avenue of renewable energy is introduced. Moreover,solar energy exploitation through building façades was addressedthrough motorized solar photovoltaic louvers (MPVL). On the otherhand, proponents exalted the benefits of MPVL overlooking the typicalanalyses. In this communication, we attempted to perform a thoroughindustrial system evaluation of the MPVL. This communication presentsa methodology to validate the industrial claims about MPVL devices andtheir economic efficiency and the insight on how geographical locationinfluences their utilization and augment their potential benefits. This taskis carried out by evaluating the extent of solar energy that can be harvestedusing solar photovoltaic system (PVSYST) software and investigatingwhether existing product claims are associated with MPVL are feasible indifferent locations. The performance and operational losses (temperature,internal network, power electronics) were evaluated. To design and assessthe performance of different configurations based on the geographicalanalogy, simulation tools were successfully carried out based on differenttopographical locations. Based on these findings, various factors affect theemployment of MPVL such as geographical and weather conditions, solarirradiation, and installation efficiency. tt is assumed that we successfullyshed light and provided insights into the complexity associated withMPVL.


Author(s):  
E Manikandan ◽  
K Mayandi ◽  
M Sivasubramanian ◽  
N Rajini ◽  
S Rajesh ◽  
...  

Solar energy is a major renewable energy resource used in power production, heating processes, and other applications such as domestic and industrial utilization. It is an abundant form of green energy. Different techniques have been made for energy conversion and one among them is solar photovoltaic/thermal (PV/T) system. Unfortunately, the greatest cause of concern is the rise in temperature of solar PV cells, which will have a negative effect on electrical performance. Thereby, eliminating excess heat on PV cells with heat transfer fluids to lower the temperature of the cells can improve electrical efficiency. A nanofluid is a promising heat transfer fluid to effectively enhance the system efficacy compared with conventional fluids. As the nanoparticle size is very small, the surface area of the nanoparticle is large so it enhances the heat transfer rate. Thereby, recently it has taken on a new dimension for research studies to enhance its thermal behavior for engineering application. This review paper discusses about the importance of nanofluid in solar PV/T system and advantages of employing nanofluid in PV/T system which has high thermo-physical properties. Nanoparticle and nanofluid preparation methods were presented. The thermo-physical properties like thermal conductivity, viscosity, density, and specific heat capacity were also discussed.


Sign in / Sign up

Export Citation Format

Share Document