scholarly journals Societal risk assessment of terminal and oil refinery unit

2021 ◽  
Vol 1052 (1) ◽  
pp. 012025
Author(s):  
AAB Dinariyana ◽  
KB Artana ◽  
DW Handani ◽  
FI Sarasvati ◽  
PW Aprilia
2021 ◽  
Author(s):  
Svitlana Liubartseva ◽  
Ivan Federico ◽  
Giovanni Coppini ◽  
Rita Lecci

<p>Being situated in a semi-enclosed Mediterranean lagoon, the Port of Taranto represents a transport, industrial and commercial hub, where the port infrastructure, a notorious steel plant, oil refinery and naval shipyards coexist with highly-dense urban zone, recreation facilities, mussel farms, and vulnerable environmental sites. A Single Buoy Mooring in the center of the Mar Grande used by tankers and subsea pipeline that takes oil directly from tanker to refinery are assumed to stay at risk of accidental oil spills, despite significant progress in technology and prevention.</p><p>The oil spill model MEDSLIK-II (http://medslik-ii.org) coupled to the high resolution Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS http://sanifs.cmcc.it Federico et al., 2017) is used to model hypothetical oil spill scenarios in stochastic mode. 15,000+ hypothetical individual spills are generated from randomly selected start locations: 50% from a buoy and 50% along the subsea pipeline 2018–2020. Individual spill scenario is based on a real crude oil spill caused by a catastrophic pipeline failure happened in Genoa in April 2016 (Vairo et al., 2017). The model outputs are processed statistically to represent quantitively: (1) timing of the oil drift; (2) hazard maps in probability terms at the sea surface and on the coastline; (3) oil mass balance; (4) local-zone contamination assessment.</p><p>The simulations reveal that around 48% of the spilled oil will evaporate during the first 8 hours after the accident. Being transported by highly variable currents and waves, the rest is additionally exposed to multiply reflections from sea walls and concrete wharfs that dominate in the study area. As a result, the oil will be dispersed almost isotropically in the Mar Grande, indicating a rather moderate or small level of concentrations over the minimum threshold values (French McCay, 2016).</p><p>We have concluded that at a probability of 50%, the first oil beaching event will happen within 14 hours after the accident. The most contaminated areas are predicted on and around the nearest Port berths, on the coastlines of the urban area and on the tips of the breakwaters that frame the Mar Grande openings. The remote areas of the West Port and Mar Piccolo are expected to be the least contaminated ones.</p><p>Results are applicable to contingency planning, ecological risk assessment, cost-benefit analysis, and education.</p><p>This work is conducted in the framework of the IMPRESSIVE project (#821922) co-funded by the European Commission under the H2020 Programme.</p><p>References</p><p>Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., Mossa, M., 2017. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci., 17, 45–59, doi: 10.5194/nhess-17-45-2017.</p><p>French McCay, D., 2016. Potential effects thresholds for oil spill risk assessments. Proc. of the 39 AMOP Tech. Sem., Environment and Climate Change Canada, Ottawa, ON, 285–303.</p><p>Vairo, T., Magrì, S., Qualgliati, M., Reverberi, A.P., Fabiano, B., 2017. An oil pipeline catastrophic failure: accident scenario modelling and emergency response development. Chem. Eng. Trans., 57, 373–378, doi: 10.3303/CET1757063.</p>


2015 ◽  
Vol 19 (4) ◽  
pp. 04015003 ◽  
Author(s):  
Bhola R. Gurjar ◽  
Ravi K. Sharma ◽  
Santosh P. Ghuge ◽  
Satish R. Wate ◽  
Rajat Agrawal

2016 ◽  
Vol 157 (35) ◽  
pp. 1394-1402 ◽  
Author(s):  
Anna Tompa ◽  
Anna Biró ◽  
Péter Balázs ◽  
Mátyás Jakab

Introduction: More than half of the Hungarian population is overweight or obese, therefore, non-alcoholic fatty liver is a common problem. According to clinical experience, 20–30% of fatty liver cases is not related to alcohol, but can be linked to diabetes, obesity or metabolic syndrome. Aim: The authors studied the correlation between genotoxicity, immuntoxicity and non-alcoholic fatty liver among oil refinery workers. Method: During this genotoxicological monitoring study the data of 107 exposed were compared to 67 controls. Results: 36% of oil refinery workers had non-alcoholic fatty liver, while none of the selected, non-exposed controls had this abnormality. Chromosomal aberrations were elevated from 1.6% to 3.75% in the exposed group, immunotoxicological parameters were also changed, and CD71 positive B-cell ratio increased especially among subjects having non-alcoholic fatty liver. Conclusions: Non-alcoholic fatty liver can negatively influence the genotoxic effects of environmental hazards in workplaces. In the future this condition should be considered during risk assessment. Orv. Hetil., 2016, 157(35), 1394–1402.


Author(s):  
Antonio C. Caputo ◽  
Alessandro Vigna

Process plants are vulnerable to natural hazards and, in particular, to earthquakes. Nevertheless, the quantitative assessment of seismic risk of process plants is a complex task because available methodologies developed in the field of civil and nuclear engineering are not readily applicable to process plants, while technical standards and regulations do not establish any procedure for the overall seismic risk assessment of industrial process plants located in earthquake-prone areas. This paper details the results of a case study performing a seismic risk assessment of an Italian refinery having a 85,000 barrels per day production capacity, and a storage capacity of over 1,500,000 m3. The analysis has been carried out resorting to a novel quantitative methodology developed in the framework of a European Union research program (INDUSE 2 SAFETY). The method is able to systematically generate potential starting scenarios, deriving from simultaneous interactions of the earthquake with each separate equipment, and to account for propagation of effects between distinct equipment (i.e. Domino effects) keeping track of multiple simultaneous and possibly interacting chains of accidents. In the paper the methodology, already described elsewhere, is briefly resumed, and numerical results are presented showing relevant accident chains and expected economic loss, demonstrating the capabilities of the developed tool.


Author(s):  
Dongliang Lu ◽  
Alex Tomic ◽  
Shahani Kariyawasam

Abstract Risk assessment is the process of risk analysis and evaluation. It is a required component of pipeline integrity management programs (IMP) and is generally the first step in most IMPs. For the risk assessment of natural gas pipelines, the primary concern is the safety of population near the pipeline right of way (ROW). TC Energy’s SWRA uses a quantitative risk assessment model that considers the effect of the thermal radiation due to ignited pipeline rupture and evaluate the consequence on the surrounding population. The overall risk is then evaluated using two specific risk criteria: societal risk and individual risk, with the societal risk measuring the overall level of risk to a community or a group of people and the individual risk measuring the level of risk to specific individuals who are present within the pipeline hazard zone. Natural gas pipeline systems often extend hundreds or even thousands of miles. As such, societal risk criteria for pipelines are typically defined based on a given length of pipeline segment, usually in 1 km or 1 mile (1.6 km). To assess the societal risk of actual pipelines, different approaches are taken on how the risk along the length of a pipeline should be aggregated and compared to the criteria. For example, the PD8010-3 standard in the UK recommends the societal risk of a pipeline through a community to be aggregated and then normalized to the unit length to be compared with criteria; whereas the Dutch regulation requires societal risk at the worst location to be used. In the current SWRA, the societal risk along the length of a pipeline going through development areas or communities is aggregated following the recommendation of the UK PD8010-3, where the risk is aggregated and normalized to the pipeline length. Due to the vast scale of the pipeline system, it is impractical to manually review all development along the pipelines for conducting societal risk assessment on a system wide basis. As such, extent of communities and development areas is determined by a computer program using a simple set of rules. It was found to have led to unsatisfying granularity in the societal risk assessment in certain situations, with some interaction lengths being too long and thus failing to identify the more critical section within the interaction length, and certain development lengths being too short and thus not very meaningful from a societal risk perspective. To overcome issues with the current societal risk assessment method in SWRA, an alternative method largely following the direction of the Dutch approach is introduced in this paper. In this alternative approach, the societal risk is evaluated continuously along a pipeline with a predefined a sliding length, and thus variations in the societal risk levels along the entire length of a pipeline, including the locations with the highest societal risk levels, can be identified. Implantation details and computational efficiency were discussed. The results from the alternative method were compared to that from the current method. The sensitivity of the sliding length method to the predefined sliding length was also investigated. The study showed that this alternative method improves the accuracy and granularity of the societal risk assessment in the SWRA, and, although it is relatively computational commanding, with an efficient implementation, is still practical even for very large gas transmission systems.


2013 ◽  
Vol 13 (11) ◽  
pp. 2957-2968 ◽  
Author(s):  
H. X. Lan ◽  
L. P. Li ◽  
Y. S. Zhang ◽  
X. Gao ◽  
H. J. Liu

Abstract. The 14 April 2010 Ms = 7.1 Yushu Earthquake (YE) had caused severe damage in the Jiegu township, the residential centre of Yushu Tibetan Autonomous Prefecture, Qinghai Province, China. In view of the fragile geological conditions after YE, risk assessment of secondary geohazards becomes an important concern for the reconstruction. A quantitative methodology was developed to assess the risk of debris flow by taking into account important intensity information. Debris flow scenarios were simulated with respect to rainfall events with 10, 50 and 100 yr returning period, respectively. The possible economic loss and fatalities caused by damage to buildings were assessed both in the settlement area and in the low hazard settlement area regarding the simulated debris flow events. Three modelled building types were adopted, i.e. hollow brick wood (HBW), hollow brick concrete (HBC) and reinforced concrete (RC) buildings. The results suggest that HBC structure achieves a good balance for the cost-benefit relationship compared with HBW and RC structures and thus could be an optimal choice for most of the new residential buildings in the Jiegu township. The low hazard boundary presents significant risk reduction efficiency in the 100 yr returning debris flow event. In addition, the societal risk for the settlement area is unacceptable when the 100 yr returning event occurs but reduces to ALARP (as low as reasonably practicable) level as the low hazard area is considered. Therefore, the low hazard area was highly recommended to be taken into account in the reconstruction. Yet, the societal risk might indeed approach an unacceptable level if one considers that YE has inevitably increased the occurrence frequency of debris flow. The quantitative results should be treated as a perspective for the reconstruction rather than precise numbers of future losses, owing to the complexity of the problem and the deficiency of data.


Sign in / Sign up

Export Citation Format

Share Document