scholarly journals Comparison of high temperature corrosion resistance of NiCr-based coatings applied by High Velocity Oxygen Fuel and Twin Arc Spray processes

2021 ◽  
Vol 1178 (1) ◽  
pp. 012039
Author(s):  
K. Lencová ◽  
R. Mušálek ◽  
F. Lukáč ◽  
M. Vostřák ◽  
Z. Česánek
Alloy Digest ◽  
2008 ◽  
Vol 57 (7) ◽  

Abstract Colmonoy No. 43HV comprises a nickel-base alloy recommended for hard surfacing parts to resist wear, corrosion, heat, and galling. Deposits that have moderate hardness have increased ductility and slightly less resistance to abrasion than Colmonoy 53HV. Deposits can be finished by grinding or machined with carbide tooling. Colmonoy No. 43HV is supplied as an atomized powder specially sized for application with high-velocity oxygen fuel (HVOF) systems. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance and surface qualities as well as heat treating and surface treatment. Filing Code: Ni-664. Producer or source: Wall Colmonoy Corporation.


Author(s):  
M.A. Cole ◽  
R. Walker

Abstract Over the past 30 years, there has been considerable interest in the development of thermally sprayed thermal barrier coatings (TBCs) for aerospace and land based turbine applications. The use of TBCs enables higher operating temperatures, resulting in significant fuel efficiency savings. This paper reports on the development of dense Yttria Stabilised Zirconia (YSZ) thermal barrier coatings produced by High Velocity Oxygen Fuel (HVOF) spraying using acetylene as the fuel gas. The use of a high temperature gas erosion rig allowed the controlled evaluation of erodent size, velocity, impact angle, and temperature on coating performance. The work also covers the optimization of process parameters, including powder morphology, stand-off distance, oxygen to fuel ratio, gas pressures, and flowrates, and their effect on coating characteristics such as deposition efficiency, microhardness, and surface roughness.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2189 ◽  
Author(s):  
Guilherme Koga ◽  
Lucas Otani ◽  
Ana Silva ◽  
Virginie Roche ◽  
Ricardo Nogueira ◽  
...  

The composition of a commercial duplex stainless steel was modified with boron additions (3.5, 4.5, and 5.5 wt.%) and processed by rapid-quenching techniques: Melt-spinning, copper-mold casting, and high-velocity oxygen fuel (HVOF). Spray deposition was also used to produce alloys as the process may induce rapid-solidified-like microstructures. These processing routes led to microstructures with distinguished corrosion resistance. Among the alloys with different boron contents, the 63.5Fe25Cr7Ni4.5B composition enabled the production of fully amorphous ribbons by melt-spinning. The cooling rate experienced during copper-mold casting, high-velocity oxygen fuel, and spray deposition did not ensure complete amorphization. The crystalline phases thereby formed were (Fe,Cr)2B and (Fe,Mo)3B2 borides in an austenitic-matrix with morphology and refinement dependent of the cooling rates. Fully amorphous 63.5Fe25Cr7Ni4.5B ribbons exhibited outstanding corrosion resistance in chloride-rich alkaline and acid media with negligible corrosion current densities of about 10−8 A/cm² and a broad passivation plateau. Although the specimens of the same composition produced by HVOF process and spray deposition exhibited lower corrosion resistance because of intrinsic porosity and crystalline phases, their corrosion behaviors were superior to those of AISI 1045 steel used as substrate with the advantage to be reinforced with hard borides known to be resistant against wear.


Author(s):  
B.G. Seong ◽  
S.Y. Hwang

Abstract High temperature corrosion is a serious problem on tlie heat exchanger tubes of recuperators because they encounter an corrosive environment at maximum temperature around 900°C. These tubes were found to be corroded via oxidation, sulfidation and molten salt corrosion. Particularly molten salt corrosion could be the most severe corrosion mechanism. As a protective coating for recuperators, nickel and cobalt based self-fluxing alloys, iron based amorphous alloy and chromium carbide cermet coatings were considered. These coatings were prepared by an arc spray and or/not fusing or a HVOF spray. Their molten salt corrosion resistance was tested, and the high temperature corrosion resistance in a SO2 containing atmosphere was examined. Also microstructures of the coatings were studied after corrosion tests.


Sign in / Sign up

Export Citation Format

Share Document