scholarly journals Enhancing diesel engine performance by using nano-dispersing agents in fuel: A review

2021 ◽  
Vol 1185 (1) ◽  
pp. 012039
Author(s):  
Manoj Kumar Elipey ◽  
Gopisetty Ravi Chandra ◽  
P. Sneha Latha ◽  
Anchupogu Praveen ◽  
B. Ratna Sunil
2021 ◽  
Vol 23 (06) ◽  
pp. 1666-1671
Author(s):  
Manoj Kumar Elipey ◽  
◽  
Gopisetty Ravi Chandra ◽  
P. Sneha Latha ◽  
◽  
...  

The developments in materials engineering facilitated to production wide range of nanoparticles with enhanced performance in several engineering applications. Enhancing performance of diesel engine is on such application recently gained tremendous attention in the energy engineering. Using nanoparticles as additives in biodiesel or diesel has shown promising results as reported by several research teams across the globe. This paper provides a brief review of using nanoparticles as dispersing agents into fuel to improve the efficiency of the diesel engine. Using different types of nanoparticles and their role in altering the fuel combustion properties are discussed. Significant developments in using a wide range of nanoparticles of different chemical compositions as additives in fuel are summarized and presented with challenges and future perspectives.


2017 ◽  
Vol 11 (4) ◽  
pp. 213
Author(s):  
Mohamad Nordin Mohamad Norani ◽  
Boon Tuan Tee ◽  
Zakaria Muhammad Zulfattah ◽  
Mohamad Norani Mansor ◽  
Md Isa Ali

2020 ◽  
Author(s):  
Mukul Agarwal ◽  
Shailendra Kumar ◽  
Bhupendra Singh Chauhan

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121097
Author(s):  
M. Mourad ◽  
Khaled R.M. Mahmoud ◽  
El-Sadek H. NourEldeen

2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


2020 ◽  
Vol 53 (2) ◽  
pp. 13976-13981
Author(s):  
Masoud Aliramezani ◽  
Armin Norouzi ◽  
Charles Robert Koch

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3837
Author(s):  
Mohammad I. Jahirul ◽  
Farhad M. Hossain ◽  
Mohammad G. Rasul ◽  
Ashfaque Ahmed Chowdhury

Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Sign in / Sign up

Export Citation Format

Share Document