scholarly journals Safety Performance Enhancement Scheme for Munition Storages by applying the Concept of Shallow Underground Configurations

2021 ◽  
Vol 1203 (3) ◽  
pp. 032071
Author(s):  
Seungsu Han ◽  
Jihye Kwon ◽  
Sungkon Kim

Abstract Practical demand for the expansion of military ammunition and explosives storage in both volume and number has been increased, but due to the regulations applying on safety distance that require those facilities to be isolated from a civilian presence there are constant complications that arise. Recent incidents include petitions to either alleviate said regulations or relocate several ammunition storage facilities neighboring civilian areas are further development. Two types of underground ammunition storage facilities wold be considered in practice; the first is the tunnel-type which is applicable to areas that have sufficient depth of the cover and the latter is the sub-surface type that retains a sufficient depth of soli layer which can especially be utilized in areas that do not meet clearance requirements nor have geographical limitations. For the sub-surface type storage, there are two construction schemes for construction to meet safety-distance requirements. The existing popular ECMs (Earth Covered Magazines) have shallow soil cover for just plantation camouflage that is not affect the pressure suppression effect due to the internal explosion. Therefore, the scheme of the increasing soil cover depth to some amount, if applicable, pressure and fragment suppression can be achieved. The open-cut method for new construction is easily applied for this purpose in the field. This study addresses the safety distance reduction effect by increasing the soil cover depth on the ECM type storage facility by applying theoretical and numerical analysis.

2021 ◽  
Vol 25 (5) ◽  
pp. 39-45
Author(s):  
A.Kh. Sariev ◽  
N.Yu. Cherbakova ◽  
N.Yu. Terentyeva

The assessment of the possibility of creating a plant-soil cover on an artificially created seal-gravel drainage layer with a rocky bed (h=110¸150 cm), on the disturbed areas of the adjacent areas of tailings storage facilities. Research for 2017–2019 shows that when sowing recult-vants with sowing standards of 150–200 kg/ha and doses of fertilizer N60P60K60 and N120P60K60 on an artificial substrate it is possible to form meadow formations with a density of grass 10–12000 pc/m2 and average productivity of 21–24 c/ha. A plant-soil-blooded blood with a turf layer of 8–10 cm is created with the simultaneous overlap of heavy metals of man-made substrates and elimination of pulp sands dusting, which contributes to the improvement of the microclimate of the environment.


2020 ◽  
Vol 8 (11) ◽  
pp. 922
Author(s):  
Tomoaki Nakamura ◽  
Yuto Nakai ◽  
Yong-Hwan Cho ◽  
Norimi Mizutani

Tsunamis can seriously damage bridges in coastal areas. Studies of such damage have elucidated the action of tsunami-induced forces on girders. However, tsunami-induced erosion of bridge-abutment backfill has been largely neglected. This article investigates this little-studied topic using hydraulic model experiments and numerical analyses. The results show that a tsunami erodes the backfill close to the abutment; the scale of the erosion increases with the duration of the tsunami. By contrast, the backfill on the far side of the abutment remains relatively intact. This suggests that the presence of the abutment accelerates the erosion of the backfill in its vicinity. A numerical simulation shows that the tsunami erodes the oval conical part of the backfill on the landward side of the onshore wing. When the erosion reaches the lower end of the wing the backfill begins to flow out from underneath. Thus, an increase in the soil-cover depth of the onshore wing might help slow down the erosion.


2013 ◽  
Vol 421 ◽  
pp. 104-109
Author(s):  
Jing Sun ◽  
Guang Jun Yang ◽  
Jian Jun Liu

To explore the noise suppression effect of mesh on cavity, the wind tunnel experiment is carried out based on the analysis of clean cavity flow characteristics. The meshes are arranged both in the cavity and at the leading edge of the cavity. Through the analysis of pressure distribution on the cavity bottom and the noise spectrum monitored at front and rear walls respectively, noise suppression effects of mesh programs relative to the clean cavity and changes in the flow field are studied, the results show that the mesh inside the cavity has a better noise reduction effect. The work in this paper provides an effective way for cavity noise reduction.


2013 ◽  
Vol 18 (6) ◽  
pp. 729-733 ◽  
Author(s):  
Chulsang Yoo ◽  
Kyoungjun Kim ◽  
Minkyu Park ◽  
Jungsoo Yoon

Author(s):  
B Rakitin ◽  
◽  
X Ming

impose uncertainties on pipe design. This paper describes the procedure and results of a series of geotechnical centrifuge tests performed on a large 1400 mm-diameter reinforced concrete pipe with a footing subjected to heavy traffic loading. The influence of soil cover depth, as well as the positions and magnitude of traffic loads, on the bending moments of the pipe were investigated. A heavy truck with a maximum load of 850 kN was simulated in the majority of the tests, and a medium truck of 252 kN was also simulated. The centrifuge test results were found to be in reasonable agreement with those from full-scale tests. The pipe would experience the most unfavorable conditions when the heaviest axis of the traffic vehicle was located directly above the pipe crown. A deeper soil cover would lead to higher initial stresses in the pipe, as well as reduced influence of traffic load. However, even for a soil cover depth of 4 m, there is significant bending moment induced by the heavy truck loading, which could not be ignored during the pipeline design. Comparison was made between the centrifuge test results and several widely adopted design methods, and unconservative calculation results were noticed for large diameter rigid pipes lying at a shallow soil cover depth subjected to heavy traffic loading.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Bin Li ◽  
Hongyuan Fang ◽  
Kangjian Yang ◽  
Hang He ◽  
Peiling Tan ◽  
...  

Current research was not dedicated to investigate the mechanical behavior of a concrete drainage pipe under multiphysical coupling conditions of overburden pressure, traffic loads, groundwater, and pipe fluids. This study proposes a new numerical solution method for coupled stress, seepage, and flow fields based on a validated finite element model. The model was developed by ABAQUS and FLUENT and then solved simultaneously using the MpCCI (mesh-based parallel-code coupling interface) platform. Results show that the tensile stress at the springline and the radial displacement at the crown (or invert) of the bell under the effect of groundwater alone were reduced by 50.5% and 38.1%, respectively, compared to the effect of traffic load alone. Parametric analyses show that vehicle speed and fluid height have a slight impact on the pipes. The soil cover depth, wheel pressure, and gasket strength are directly proportional to the pipe stress and vertical displacement. Within the scope of their respective changes, the pipe stresses were increased by 34.4%, 36.7%, and 28.5%, and the vertical displacements were increased by 124%, 95.85%, and 87.7%. The bedding and backfill strengths are proportional to the pipe stress and inversely proportional to the vertical displacement. Within the scope of their respective changes, the pipe stresses were increased by 18.2% and 20.0%, and the vertical displacements were decreased by 11.4% and 10.4%. Sensitivity analyses show that soil cover depth has a greatest impact on the pipe, followed by traffic load.


Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 602-647
Author(s):  
Cem Yenidogan

Earthquake Seismic isolation plays an important role in achieving sustainable earthquake resilience communities. Seismic isolation method is a justified, mature, and reliable performance enhancement strategy for a wide range of structural systems and valuable contents. As a result of the targeted response modification, high-performance expectations and earthquake resilience can be achieved during the service life of the structures that are compliant with the design code requirements. Design and analysis procedures of isolation systems in standards were evolved substantially to expand the use of isolation technology and quantify the benefits of isolation systems to overcome the existing impediments. Strictly speaking, new tools are offered to the engineering community to highlight the possible issues that may appear in isolation units beyond the design basis earthquake level to improve the accuracy of response prediction. This paper aims to overview the characteristics of frequently used isolation systems in the industry with mathematical models, design criteria toward sustainable communities, the current state of practice along with the set forth design requirements of selectively well-known standards with special emphasis to the ELF procedure from the perspective of performance-based design philosophy. Additionally, two large-scale seismic isolation applications in the world are given as benchmark studies for the new construction and upgrading scheme in the content of the study.


2014 ◽  
Vol 51 (4) ◽  
pp. 353-368 ◽  
Author(s):  
Boris Rakitin ◽  
Ming Xu

Large-diameter pipes, as well as heavy vehicles, have become increasingly prevalent, which imposes uncertainties on pipe design. This paper describes the procedure and results of a series of geotechnical centrifuge tests performed on a large 1400 mm diameter reinforced concrete pipe subjected to heavy traffic loading up to 850 kN. The influence of soil cover depth, as well as the positions and magnitude of traffic loads, on the bending moments of the pipe were investigated. The centrifuge test results were found to be in reasonable agreement with those from full-scale tests. The pipe would experience the most unfavorable conditions when the heaviest axle of the traffic vehicle was located directly above the pipe crown. A deeper soil cover would lead to higher initial stresses in the pipe, as well as reduced influence of traffic load. However, even for a soil cover depth of 4 m, there is significant bending moment induced by the heavy truck loading, which cannot be ignored during pipeline design. A comparison was made between the centrifuge test results and several widely adopted design methods, and unconservative calculation results were noticed for large-diameter rigid pipes lying at a shallow soil cover depth subjected to heavy traffic loading.


Sign in / Sign up

Export Citation Format

Share Document