scholarly journals Life-cycle assessment of a photovoltaic panel: Assessment of energy intensity of production and environmental impacts

2021 ◽  
Vol 1209 (1) ◽  
pp. 012027
Author(s):  
M Vácha ◽  
J Kodymová ◽  
V Lapčík

Abstract A number of articles have already been published on energy recovery from the sun using solar panels and their environmental impacts. However, in this article, we assess the impact of solar panel technology, and use separately obtained data based on the disassembly of a specific photovoltaic panel into discrete parts. The aim of this article is to list all the environmental impacts of this panel per unit of energy produced and at the same time to focus primarily on deciphering the energy intensity of individual phases of the life cycle of photovoltaic panel production. An analytical method of Life-cycle assessment using the environmental software version SimaPro 9.0.049 with an integrated Ecoinvent 3 database was used to determine the environmental impacts. Throughout the work, we focus on the data obtained, which shows that the process of photovoltaic panel production itself is very energy-intensive, especially in the phase of photovoltaic cell production and solar glass production. In other phases, which is the production of individual parts of the photovoltaic panel, its use, and subsequent recycling, they do not contribute so much to the overall energy balance. In the environmental impact assessment, the most affected aspects were human health, followed by climatic change, resources, and the ecosystem quality came last. In all four of the above categories, the influence of the photovoltaic cell production phase was determined to be dominant.

2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2019 ◽  
Vol 12 (1) ◽  
pp. 294 ◽  
Author(s):  
Zhuyuan Xue ◽  
Hongbo Liu ◽  
Qinxiao Zhang ◽  
Jingxin Wang ◽  
Jilin Fan ◽  
...  

The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.


2020 ◽  
Vol 32 (5) ◽  
pp. 2977-2995 ◽  
Author(s):  
S. Schade ◽  
T. Meier

Abstract Specific microalgae species are an adequate source of EPA and DHA and are able to provide a complete protein, which makes them highly interesting for human nutrition. However, microalgae cultivation has also been described to be energy intensive and environmentally unfavorable in pilot-scale reactors. Moreover, production in cold temperature zones has not been sufficiently investigated. In particular, the effects of tube materials and cultivation season length have rarely been previously investigated in the context of a comparative LCA of microalgae cultivation. A computational “top-down” model was conducted to calculate input flows for Nannochloropsis sp. and Phaeodactylum tricornutum cultivation in a hypothetical tubular photobioreactor. Cultivation processes were calculated according to detailed satellite climatic data for the chosen location in Central Germany. This model was applied to a set of different scenarios, including variations in photobioreactor material, tube diameter, microalgae species, and cultivation season length. Based on these data, a life cycle assessment (LCA) was performed following ISO standard 14040/44. The impact assessment comprised the global warming potential, acidification, eutrophication, cumulative energy demand, and water scarcity. The results showed that a long cultivation season in spring and fall was always preferable in terms of environmental impacts, although productivity decreased significantly due to the climatic preconditions. Acrylic glass as a tube material had higher environmental impacts than all other scenarios. The cultivation of an alternative microalgae species showed only marginal differences in the environmental impacts compared with the baseline scenario. Critical processes in all scenarios included the usage of hydrogen peroxide for the cleaning of the tubes, nitrogen fertilizer, and electricity for mixing, centrifugation, and drying. Microalgae cultivation in a tubular photobioreactor in a “cold-weather” climate for food is sustainable and could possibly be a complement to nutrients from other food groups. The added value of this study lies in the detailed description of a complex and flexible microalgae cultivation model. The new model introduced in this study can be applied to numerous other scenarios to evaluate photoautotrophic microalgae cultivation in tubular photobioreactors. Thus, it is possible to vary the facility location, seasons, scale, tube dimensions and material, microalgae species, nutrient inputs, and flow velocity. Moreover, single processes can easily be complemented or exchanged to further adjust the model individually, if, for instance, another downstream pathway is required.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


Solar Energy ◽  
2016 ◽  
Vol 133 ◽  
pp. 283-293 ◽  
Author(s):  
Jinglan Hong ◽  
Wei Chen ◽  
Congcong Qi ◽  
Liping Ye ◽  
Changqing Xu

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4998
Author(s):  
Vasileios Ntouros ◽  
Ioannis Kousis ◽  
Dimitra Papadaki ◽  
Anna Laura Pisello ◽  
Margarita Niki Assimakopoulos

In the last twenty years, research activity around the environmental applications of metal–organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental sustainability, which accounted for more than 85% of the overall environmental impacts in those synthetic routes where they were utilized as solvents and as cleaning agents at the same time; (b) the electricity consumption, especially due to the Greek energy mix which is fossil-fuel dependent, and accounted for up to 13% of the overall environmental impacts in some synthetic routes. Nonetheless, for the optimization of the impacts provided by the energy use, suggestions are made based on the use of alternative, cleaner renewable energy sources, which (for the case of wind energy) will decrease the impacts by up to 2%.


Author(s):  
S. Boughrara ◽  
M. Chedri ◽  
K. Louhab

The aim of this study is the use of Life Cycle Assessment, to evaluate the impact generated by cement manufactory situated in Sour EL Ghozlane town in Algeria country, which use the dry process to produce cement Portland. The LCA method is used for compiling and examining the inputs and outputs of energy, raw material and environmental impacts directly attributable to the manufacture and functioning of a product throughout its life. It is also used to determine element and energy contributing to each impact evaluated. Potentials impacts are evaluated using the SimaProV.7.1 software and IMPACT2000+ method in this study.


Author(s):  
Gilberto Martinez-Arguelles ◽  
Maria Paola Acosta ◽  
Margareth Dugarte ◽  
Luis Fuentes

The environmental impacts of natural aggregates (NA) and recycled concrete aggregates (RCA) production for use in road pavements have been evaluated in this study through an attributional life cycle assessment (LCA) from cradle to gate. Such effort is relevant considering the increasing interest of national agencies in applying recycled aggregates for construction and rehabilitation (C&R) of highway infrastructures. The study used site-specific data from two different aggregate production plants, stationary and mobile, both located in the northern region of Colombia. The stationary facility produces NA, and the mobile plant processes a combination of NA and RCA from the demolition of Portland cement concrete (PCC) pavements in the city of Barranquilla. The aggregates produced in the stationary facility are generally used as road base and subbase materials, and in the production of PCC, whereas the recycled mobile plant produces aggregate for subbase and road base mainly. Two scenarios were contemplated in the study. The first scenario involved extraction, hauling, and processing of NA. The second scenario involved aggregate (limestone) extraction, hauling, and recycling of RCA, and finally processing the combination of NA with RCA. The environmental impacts related to the production process of both stationary and mobile plants were evaluated using the computer program SimaPro 8.4.0 and the impact assessment method IMPACT 2002+. The results showed that diesel fuel is the principal energy used in both production processes, and is mainly responsible for the negative impact on respiratory inorganics, global warming, and nonrenewable energy. Results were very sensitive to transportation distances.


Sign in / Sign up

Export Citation Format

Share Document