scholarly journals Life Cycle Assessment of Maize-Germ Oil Production and The Use of Bioenergy to Mitigate Environmental Impacts: A Gate-To-Gate Case Study

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.

Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


Author(s):  
N. Lourenço ◽  
L. M. Nunes

Abstract This study benchmarks vermifiltration (VF) as secondary wastewater treatment in three nature-based decentralized treatment plants using life-cycle assessment. The comparison is justified by the comparatively easier and cheaper operation of VF when compared to more traditional technologies, including small rate infiltration (SRI), constructed wetlands (CW), and activated sludge (AS). Standard life cycle assessment was used and applied to three case studies located in southern Europe. Material intensity during construction was highest for VF, but impacts during operation were lower, compensating those of the other phases. Impacts during the construction phase far outweigh those of operation and dismantling for facilities using constructed wetlands and activated sludge, when the number of served inhabitants is small, and due to lack of economies of scale. VF used as secondary treatment was shown to contribute to reducing the environmental impacts, mainly in constructed wetlands and activated sludge. The replacement of CW by VF seems to bring important environmental benefits in most impact categories, in particular in the construction phase. The replacement by VF in facilities with SRI seems to result in the improvement of some of the impact categories, in particular in the operation phase. As for dismantling, no conclusive results were obtained.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4998
Author(s):  
Vasileios Ntouros ◽  
Ioannis Kousis ◽  
Dimitra Papadaki ◽  
Anna Laura Pisello ◽  
Margarita Niki Assimakopoulos

In the last twenty years, research activity around the environmental applications of metal–organic frameworks has bloomed due to their CO2 capture ability, tunable properties, porosity, and well-defined crystalline structure. Thus, hundreds of MOFs have been developed. However, the impact of their production on the environment has not been investigated as thoroughly as their potential applications. In this work, the environmental performance of various synthetic routes of MOF nanoparticles, in particular ZIF-8, is assessed through a life cycle assessment. For this purpose, five representative synthesis routes were considered, and synthesis data were obtained based on available literature. The synthesis included different solvents (de-ionized water, methanol, dimethylformamide) as well as different synthetic steps (i.e., hours of drying, stirring, precursor). The findings revealed that the main environmental weak points identified during production were: (a) the use of dimethylformamide (DMF) and methanol (MeOH) as substances impacting environmental sustainability, which accounted for more than 85% of the overall environmental impacts in those synthetic routes where they were utilized as solvents and as cleaning agents at the same time; (b) the electricity consumption, especially due to the Greek energy mix which is fossil-fuel dependent, and accounted for up to 13% of the overall environmental impacts in some synthetic routes. Nonetheless, for the optimization of the impacts provided by the energy use, suggestions are made based on the use of alternative, cleaner renewable energy sources, which (for the case of wind energy) will decrease the impacts by up to 2%.


2021 ◽  
Vol 11 (3) ◽  
pp. 1160
Author(s):  
Antonella Accardo ◽  
Giovanni Dotelli ◽  
Marco Luigi Musa ◽  
Ezio Spessa

This paper presents the results of an environmental assessment of a Nickel-Manganese-Cobalt (NMC) Lithium-ion traction battery for Battery Electric Light-Duty Commercial Vehicles (BEV-LDCV) used for urban and regional freight haulage. A cradle-to-grave Life Cycle Inventory (LCI) of NMC111 is provided, operation and end-of-life stages are included, and insight is also given into a Life Cycle Assessment of different NMC chemistries. The environmental impacts of the manufacturing stages of the NMC111 battery are then compared with those of a Sodium-Nickel-Chloride (ZEBRA) battery. In the second part of the work, two electric-battery LDCVs (powered with NMC111 and ZEBRA batteries, respectively) and a diesel urban LDCV are analysed, considering a wide set of environmental impact categories. The results show that the NMC111 battery has the highest impacts from production in most of the impact categories. Active cathode material, Aluminium, Copper, and energy use for battery production are the main contributors to the environmental impact. However, when vehicle application is investigated, NMC111-BEV shows lower environmental impacts, in all the impact categories, than ZEBRA-BEV. This is mainly due to the greater efficiency of the NMC111 battery during vehicle operation. Finally, when comparing BEVs to a diesel LDCV, the electric powertrains show advantages over the diesel one as far as global warming, abiotic depletion potential-fossil fuels, photochemical oxidation, and ozone layer depletion are concerned. However, the diesel LDCV performs better in almost all the other investigated impact categories.


Author(s):  
Duc Tuan Dong ◽  
Wei Cai

Life-cycle assessment has been widely applied in many industry sectors for years and there are some applications of this method in the shipping sector. Fuel consumption and material consumption are considered as crucial factors in the life cycle of ship. This study uses the life-cycle assessment method to show the effects of fuel consumption reduction and light displacement tonnage on the environmental performance of ships. This is done by comparing the environmental impacts of 25 investigated scenarios with different fuel consumption and light displacement tonnage. CML2001 methodology is used to evaluate the impact assessment and the results are calculated using GaBi software. The results show that fuel consumption reduction could cut down the environmental impacts. However, some scenarios are not environmentally beneficial due to the increase in light displacement tonnage. The effects of fuel consumption and light displacement tonnage on 12 CML2001 environmental indicators are different. It is recommended that the life-cycle assessment method should be used to fully assess the environmental impacts of ships before applying any techniques in order to achieve the environmental benefits.


2020 ◽  
Vol 76 (3) ◽  
pp. 137-153
Author(s):  
Harnpon Phungrassami ◽  
Phairat Usubharatana

Environmental impacts of fishery production have resulted in increased concern and awareness. Thailand, as one of the largest global fish exporters, faces challenges related to environmental problems caused by fishery processes. Here, the environmental impact of Thai surimi production was estimated based on life cycle assessment (LCA) methodology, focusing specifically on two Thai surimi products made from goatfish and ponyfish caught within the southern region of Thailand. Three impact categories where explored: global warming, acidification and eutrophication. Life cycle impacts were calculated for one kg of product using both mass and economic allocations. Results of this study indicated that goatfish has lower impacts than ponyfish for all the impact categories. Fuel consumption during the fishery phase and electricity consumption during processing were the main parameters leading to most of the considered environmental impacts. The value of Global Warming  Potential(GWP) ranged within 1.3‒3.0 kg CO2eq for goatfish and 2.2‒7.1 kg CO2eq ponyfish depending on the allocation method. The acidification impact of goatfish and ponyfish were revealed at 3.2‒7.3 gSO2eq and 12.7‒39.7 gSO2eq, respectively. The eutrophication of goatfish and ponyfish were 0.7‒1.6 gPO4eq and 2.5‒8.1 gPO4eq, respectively. Sensitivity analysis of fuel consumption, electricity consumption, product yield and allocation method were evaluated.


2016 ◽  
Vol 27 (2) ◽  
pp. 68 ◽  
Author(s):  
Vinesh Naicker ◽  
Brett Cohen

This paper presents the results of a study comparing the life cycle environmental impacts and cumulative energy demands of reading printed books (print system) with those of reading e-books from an Apple Air iPad (digital system), with a specific focus on production of books and use of both options in South Africa. The two systems were compared using the ReCiPe midpoint and cumulative energy demand methods. The findings, which are consistent with international findings, demonstrate that the print system has lower impacts than the digital system in the impact categories of freshwater eutrophication, freshwater ecotoxicity, marine ecotoxicity and metal depletion, whilst the digital system has lower impacts in the categories of climate change, ozone depletion, terrestrial acidification, marine eutrophication, human toxicity, photochemical oxidant formation, particulate matter formation, terrestrial ecotoxicity, ionising radiation, agricultural land occupation, urban land occupation, natural land transformation, water depletion and fossil depletion. The major processes contributing to energy demand and environmental impacts of the print system were paper production and printing. For the digital system the major contributing processes were the production of the iPad and e-book reading. Coal-based electricity and coal-miningrelated activities featured prominently in both systems, affecting environmental impacts and energy demand of products and services in South Africa. A change in the electricity mix to be less coal-intensive reduced the impacts of both systems. Finally, the products demonstrate that relatively few additional readers result in printed books becoming preferable to e-books in almost all impact categories, suggesting the need to consider housing print books in libraries to reduce their relative environmental impacts.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
V. Russo ◽  
A. E. Strever ◽  
H. J. Ponstein

Abstract Purpose Following the urgency to curb environmental impacts across all sectors globally, this is the first life cycle assessment of different wine grape farming practices suitable for commercial conventional production in South Africa, aiming at better understanding the potentials to reduce adverse effects on the environment and on human health. Methods An attributional life cycle assessment was conducted on eight different scenarios that reduce the inputs of herbicides and insecticides compared against a business as usual (BAU) scenario. We assess several impact categories based on ReCiPe, namely global warming potential, terrestrial acidification, freshwater eutrophication, terrestrial toxicity, freshwater toxicity, marine toxicity, human carcinogenic toxicity and human non-carcinogenic toxicity, human health and ecosystems. A water footprint assessment based on the AWARE method accounts for potential impacts within the watershed. Results and discussion Results show that in our impact assessment, more sustainable farming practices do not always outperform the BAU scenario, which relies on synthetic fertiliser and agrochemicals. As a main trend, most of the impact categories were dominated by energy requirements of wine grape production in an irrigated vineyard, namely the usage of electricity for irrigation pumps and diesel for agricultural machinery. The most favourable scenario across the impact categories provided a low diesel usage, strongly reduced herbicides and the absence of insecticides as it applied cover crops and an integrated pest management. Pesticides and heavy metals contained in agrochemicals are the main contributors to emissions to soil that affected the toxicity categories and impose a risk on human health, which is particularly relevant for the manual labour-intensive South African wine sector. However, we suggest that impacts of agrochemicals on human health and the environment are undervalued in the assessment. The 70% reduction of toxic agrochemicals such as Glyphosate and Paraquat and the 100% reduction of Chlorpyriphos in vineyards hardly affected the model results for human and ecotoxicity. Our concerns are magnified by the fact that manual labour plays a substantial role in South African vineyards, increasing the exposure of humans to these toxic chemicals at their workplace. Conclusions A more sustainable wine grape production is possible when shifting to integrated grape production practices that reduce the inputs of agrochemicals. Further, improved water and related electricity management through drip irrigation, deficit irrigation and photovoltaic-powered irrigation is recommendable, relieving stress on local water bodies, enhancing drought-preparedness planning and curbing CO2 emissions embodied in products.


Sign in / Sign up

Export Citation Format

Share Document