scholarly journals Numerical Study on the axial compression performance of concrete-filled steel tubular hybrid columns

Author(s):  
Lianqiong Zheng ◽  
Hang Yang
2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Hua Huang ◽  
Kailin Xi ◽  
Yu Zhang ◽  
Jinghui Shi ◽  
Boquan Liu

The load carrying capacity and failure mechanism of 8 square columns strengthened with high-performance ferrocement laminate (HPFL) and bonded steel plates (BSP) were analyzed on the basis of experiments on the axial compression performance of these columns. Results show that the reinforcing layer worked together with the original columns as a whole, and the load-bearing capacity significantly increased. When failure of the strengthened column occurred, the mortar and concrete were crushed and bulged outward in the middle of the columns, the angle bars and longitudinal steel bars buckled, and some stirrups were pulled out. The chamfering of angle bar momentously affected the primary damage of steel strand. The values of the strength reduction factor and pressure effective utilization coefficient of the mortar were suggested. Based on the experiments and existing tests of 35 columns strengthened with HPFL, equations for the axial compression bearing capacity were proposed and all calculation results agreed well with testing results. Therefore, the calculation method could be used in the capacity design of axial compression strengthened columns.


Author(s):  
Ling Zhu ◽  
Jieling Kong ◽  
Qingyang Liu ◽  
Han Yang ◽  
Bin Wang

The tubular bracing members of offshore structures may sustain collision damages from the supply ships, which lead to the deterioration of the load carrying capacity of tubular bracing members. This paper presents a numerical simulation of the ultimate strength of damaged tubular bracing members under axial compression with the nonlinear finite element code ABAQUS, based on previous experimental investigations. Parametric studies are conducted to investigate the load capacity of damaged tubular bracing members, by considering the effects of diameter (D), wall thickness (H), pipe length (L) and the damage positions on the ultimate strength of tubular members. It is found that lateral damage can cause great reduction of the axial load capacity of tubular members. In addition, an approximate equation to predict the ultimate strength of tubular members based on the given damage depth is proposed.


2012 ◽  
Vol 446-449 ◽  
pp. 981-988
Author(s):  
Zhen Bao Li ◽  
Wen Jing Wang ◽  
Wei Jing Zhang ◽  
Yun Da Shao ◽  
Bing Zhang ◽  
...  

Axial compression experiments of four full-scale reinforced concrete columns of two groups were carried out. One group of three columns used high-strength steel with the yield strength of 1000MPa as reinforcement hoops, and the second group used the ordinary-strength steel with yield strength of 400MPa. The axial compressive performances between these two groups were assessed. Compared to the specimen using the ordinary-strength steel, the axial compressive bearing capacity of using the high strength steel dose not increase significantly, while the deformation ability increases greatly. The results also indicate that the stress redistributions of the hoops and the concrete sections are obvious, and long-lasting when specimens achieve the ultimate bearing capacity after the yield of the rebar and local damage of concrete materials, at this time the strain of the specimens developes a lot, especially stress - strain curves of speciments with high-strength hoop all show a wide and flat top.


Sign in / Sign up

Export Citation Format

Share Document