scholarly journals How to Post-Process Experimental Results from the Flange Bulging Test? Application to the characterization of a Zinc alloy

Author(s):  
N Boudeau ◽  
L Vitu ◽  
N Laforge ◽  
P Malécot ◽  
G Michel ◽  
...  
2018 ◽  
Author(s):  
L. Vitu ◽  
N. Laforge ◽  
P. Malécot ◽  
N. Boudeau ◽  
S. Manov ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Zhang ◽  
Hongduo Zhao

The objective of this paper is to investigate the characterization of moisture diffusion inside early-age concrete slabs subjected to curing. Time-dependent relative humidity (RH) distributions of three mixture proportions subjected to three different curing methods (i.e., air curing, water curing, and membrane-forming compounds curing) and sealed condition were measured for 28 days. A one-dimensional nonlinear moisture diffusion partial differential equation (PDE) based on Fick’s second law, which incorporates the effect of curing in the Dirichlet boundary condition using a concept of curing factor, is developed to simulate the diffusion process. Model parameters are calibrated by a genetic algorithm (GA). Experimental results show that the RH reducing rate inside concrete under air curing is greater than the rates under membrane-forming compound curing and water curing. It is shown that the effect of water-to-cement (w/c) ratio on self-desiccation is significant. Lower w/c ratio tends to result in larger RH reduction. RH reduction considering both effect of diffusion and self-desiccation in early-age concrete is not sensitive to w/c ratio, but to curing method. Comparison between model simulation and experimental results indicates that the improved model is able to reflect the effect of curing on moisture diffusion in early-age concrete slabs.


Author(s):  
Katsumasa Miyazaki ◽  
Kunio Hasegawa ◽  
Koichi Saito ◽  
Bostjan Bezensek

The fitness-for-service code requires the characterization of non-aligned multiple flaws for the flaw evaluation, which is performed using a flaw proximity rule. Worldwide almost all codes provide own proximity rule, often with unclear technical bases of the application of proximity rule to ductile fracture. To clarify the appropriate proximity rule for non-aligned multiple flaws in fully plastic fracture, fracture tests on flat plate specimen with non-aligned multiple through wall flaws were conducted at ambient temperature. The emphasis of this study was put on the flaw alignment rule, which determines whether non-aligned flaws are treated as independent or aligned onto the same plane for the purpose of flaw evaluations. The effects of the flaw separation and flaw size on the maximum load were investigated. The experimental results were compared with the estimations of the collapse load using the alignment rules in the ASME Section XI, BS7910 and API 579-1 codes. A new estimation procedure specific to the fully plastic fracture was proposed and compared with the comparison with the experimental results.


Author(s):  
David Song ◽  
Ashish Gupta ◽  
Chia-Pin Chiu

This paper presents the current-carrying-capacity (CCC) characterization of a land-grid-array type microprocessor socket. This CCC study has been performed using both computational modeling and experiments using infrared camera. A subsequent risk assessment was performed against the maximum allowed temperature at the point of pressure contact of socket pin for the use-condition socket pin current and motherboard temperature. The results from the modeling and the experimental results are compared.


2014 ◽  
Vol 04 (04) ◽  
pp. 1450035 ◽  
Author(s):  
Lin Zhang ◽  
Patrick Bass ◽  
Zhi-Min Dang ◽  
Z.-Y. Cheng

The equation ε eff ∝ (ϕc - ϕ)-s which shows the relationship between effective dielectric constant (εeff) and the filler concentration (φ), is widely used to determine the percolation behavior and obtain parameters, such as percolation threshold φc and the power constant s in conductor–dielectric composites (CDCs). Six different systems of CDCs were used to check the expression by fitting experimental results. It is found that the equation can fit the experimental results at any frequency. However, it is found that the fitting constants do not reflect the real percolation behavior of the composites. It is found that the dielectric constant is strongly dependent on the frequency, which is mainly due to the fact that the frequency dependence of the dielectric constant for the composites close to φc is almost independent of the matrix.


2003 ◽  
Vol 14 (06) ◽  
pp. 983-994 ◽  
Author(s):  
CYRIL ALLAUZEN ◽  
MEHRYAR MOHRI

Finitely subsequential transducers are efficient finite-state transducers with a finite number of final outputs and are used in a variety of applications. Not all transducers admit equivalent finitely subsequential transducers however. We briefly describe an existing generalized determinization algorithm for finitely subsequential transducers and give the first characterization of finitely subsequentiable transducers, transducers that admit equivalent finitely subsequential transducers. Our characterization shows the existence of an efficient algorithm for testing finite subsequentiability. We have fully implemented the generalized determinization algorithm and the algorithm for testing finite subsequentiability. We report experimental results showing that these algorithms are practical in large-vocabulary speech recognition applications. The theoretical formulation of our results is the equivalence of the following three properties for finite-state transducers: determinizability in the sense of the generalized algorithm, finite subsequentiability, and the twins property.


2021 ◽  
Vol 1016 ◽  
pp. 1473-1478
Author(s):  
Oriana Tassa ◽  
Laura Alleva ◽  
Roberto Sorci

Rina Consulting Centro Sviluppo Materiali (CSM) has been involved in the study and development of powder metallurgy for different applications, thanks to its participation in many research industrial and funded projects. The entire metal powder production chain takes place within the company's own researcher and facilities. This allows to produce high quality powders starting from alloy design, VIGA atomization and chemical, rheological and particle size analysis. In recent years, the development has mainly concerned manufacturing processes. Currently only a limited number of metal alloys can be processed by AM. For that reason, the alloy design becomes a really important topic to enlarge AM capabilities to other materials and applications. Starting from commercial Thermodynamic and Kinetic codes and proprietary models on solidification and micro-segregation, the alloy chemical composition can be fine-tuned to optimize the microstructure, considering the target properties of the material and the relevant AM processing windows, taking into account also the post process treatment conditions. Moreover, the knowledge of the production plants allows CSM to have a wide vision on the realization and the characterization of the metal powders focusing to achieve the best powder quality suitable for AM applications. Finally, AM is a relatively “new” process, standardization is still an ongoing activity involving several communities and organizations like ASTM, AWS and ISO; in this contest CSM has already designed the guidelines for qualification and certification processes and has created a dedicated laboratory to qualify powders of AM players.


Sign in / Sign up

Export Citation Format

Share Document