scholarly journals DC Motor Speed Controller Design using Pulse Width Modulation

Author(s):  
A Faroqi ◽  
M A Ramdhani ◽  
F Frasetyio ◽  
A Fadhil
2018 ◽  
Vol 7 (3.27) ◽  
pp. 116
Author(s):  
S Reeba Rex ◽  
Mary ` Synthia Regis Praba2

This paper presents an implementation of a microcontroller based boost converter to maintain constant speed of a DC motor. The optimised values namely kp,ki,kd  of the  Boost Converter  are taken from firefly algorithm[10] and implemented using microcontroller. Pulse width modulation (PWM) is a procedure to generate changeable pulse width with different duty cycle. The PWM signal reduces the switching losses. This paper presents a DC motor speed controller where PID Controller is used where the optimized values of kp,ki,kd are taken from firefly algorithm[10]. The PWM pulse width will alter the speed of the motor.  The motor voltage and revolutions per seconds (RPS) obtained at different duty cycle rates. With increase in duty cycle, further voltage is applied to the motor. This gives stronger magnetic flux in the armature windings and to enhance revolutions per seconds. The characteristics and concert of the DC motor speed control system was discussed. In this paper, a PIC microcontroller is designed with a DC-DC boost converter for the motor speed controller system. Finally to improve the graphical result we design the hardware in loop method using matlab.  


Author(s):  
Cosmas Tatenda Katsambe ◽  
Vinukumar Luckose ◽  
Nurul Shahrizan Shahabuddin

Pulse width modulation (PWM) is used to generate pulses with variable duty cycle rate. The rapid rising and falling edges of PWM signal minimises the switching transition time and the associated switching losses. This paper presents a DC motor speed controller system using PWM technique. The PWM duty cycle is used to vary the speed of the motor by controlling the motor terminal voltage.The motor voltage and revolutions per minutes (RPM) obtained at different duty cycle rates. As the duty cycle increases, more voltage is applied to the motor. This contributes to the stronger magnetic flux inside the armature windings and the increasethe RPM. The characteristics and performance of the DC motor speed control system was investigated. In this paper, a PIC microcontroller and a DC-DC buck converter are employed in the DC motor speed controller system circuit. The microcontroller provides flexibility to the circuit by incorporating two push button switches in order to increase and to decrease the duty cycle rate. The characteristics and performance of the motor speed controller system using microcontroller was examined at different duty cycle rate ranging from 19% to 99%.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Nasrul Harun

The Technology and information development involve production process in industries using microcontroller as a brain in control process. The number  of control process with microcontroller using Fuzzy Logic method to get the function as is needed. Motors DC are used in some  equipment as a driver, not only in small scale but also in huge scale. It used in low or high speed too. The way of controlled chosen depend on the function of DC motor movement. The another method is Pulse Width Modulation (PWM). This is an effective method to controlled DC motor. This method produces square pulses which have specific comparison between high pulse and low pulse. It is usual scale from 0% to 100%. In this research, both Fuzzy Logic method and Pulse Width Modulation (PWM) method base of microcontroller ATMega 8535, both are integrated to control lthe  DC motor speed.


Author(s):  
Shraddha Nagare ◽  
Snehal Padwal ◽  
Shweta Thakare ◽  
Prof. K. T. Ugale

PLC using rensans microcontroller for speed control of DC Gear Motor. in this project we will use rensans PLC for controlling the speed of operation of DC gear motor DC gear motor we can control with the help of pwm technique pulse width modulation. in this modulation we will very the weed width and control the DC gear motor speed. we will give 12 volt supply to DC motor and for controlling the speed we will put one circuit with the help of transistor between Rensans PLC and DC gear motor circuit used for pwm purpose the microcontroller give the pulses through transistor to the DC motor depending upon the pulses speed will vary in this pulses we will vary the on time and off time of the DC speed water if the on time is larger than the of time the speed of motor is increases and if the of time is larger than of time then speed will decreases this is a pwm technique pulse width modulation we will use in the project.


2012 ◽  
Vol 580 ◽  
pp. 141-145
Author(s):  
Quan Zhang ◽  
Yong Cai Yang

Motor operates as the power source of the vehicles, which is one of the most important parts in the vehicle system. This paper is going to find out the speed control method of the DC motor of Golf electrical cars from both theory and practice. A virtual instrument, which produces the Pulse Width Modulation (PWM) signal, is developed with LabVIEW to control the motor speed. This smart motor speed controller differs from the traditional mechanical control of DC motor in daily life, and is instructive and significant as a new speed control method of vehicle motor.


Author(s):  
Tonny Suhendra ◽  
Alena Uperiati ◽  
Dwi Amalia Purnamasari ◽  
Anton Hekso Yunianto

The DC motor is one component of robot, the main function of a DC motor is as a driver, whether it's a legged robot or not, as used in a mobile robot. DC motor control is necessary to be one thing that must be considered, because if the motor does not run properly, it will renew the purpose of the motor when it is created. The ability to control a DC motor is needed when building a robot. Many things can affect a person’s ability to design DC motor controller, one of which is the development of science, especially computer science, the use of algorithms to achieve the effectiveness of DC motor movements is very necessary today, so that the robot can move well and according to what is desired. The algorithm requires some information from the system that is built either as input or output so that the algorithm can perform the control process properly. in this study the motor speed controller circuit has been designed using transistor IR630 (n-channel mosfet), in this study the motor speed controller circuit has been designed using transistor IR630 (n-channel mosfet), the potentiometer is used as an analog input on the microcontroller and then converted to a PWM signal which will be used as input to the controller circuit to drive a DC motor. In the tests that have been carried out, the results obtained that the motor can be controlled properly, the use of resistors with a certain amount (220 ohms) can increase the resulting motor rotation and at what voltage the motor starts to spin at a voltage of 0.436 volts, and continues to increase and the maximum voltage recorded at 6.40 Volts.


2013 ◽  
Vol 385-386 ◽  
pp. 977-980
Author(s):  
Bao Bin Liu

A nonlinear adaptive controller is proposed for the design of pulse width modulation voltage-source rectifier with disturbance signals of harmonics to achieve reference velocity tracking. The procedure of the robust controller design is developed via improved backstepping method. With the proposed controller, PWM voltage-source rectifiers can guarantee accuracy of output voltage tracking. Global asymptotic stability of the closed-loop system has been proved. The simulation results demonstrate effectiveness of the presented method.


2021 ◽  
Vol 33 (5) ◽  
pp. 1178-1189
Author(s):  
Takeharu Hayashi ◽  
Yoshihiko Takahashi ◽  
Satoru Yamaguchi ◽  
◽  

We are developing a small compact electric vehicle for shopping purposes. In this study, we fabricated an experimental vehicle, that uses only six small rechargeable AA batteries (7.2 V, approximately 2 A·h) as an electric power source. The vehicle user can select between two driving positions: standing and sitting. A compact transmission with a 90-W DC motor and a speed controller that uses pulse width modulation control was designed as an actuating system. Running experiments were conducted to observe the performance of the fabricated vehicle on a flat floor in a gymnasium. The fabricated vehicle was able to operate for 52 min at a speed of 2.73 km/h. The getting-on and getting-off processes in the vehicle were repeated many times during shopping. The human leg strain while getting on and off the vehicle was investigated by electromyogram measurement. During the getting-on and getting-off processes in the vehicle, the myoelectric potential of the quadriceps increased in the sitting position but did not increase in the standing position. The experimental results show that a user suffers more strain in the sitting position than in the standing position.


Sign in / Sign up

Export Citation Format

Share Document