scholarly journals The influence of temperature-strain rate conditions on hot workability and microstructure of powder metallurgy nickel-based superalloy EP741NP

Author(s):  
A A Ganeev ◽  
V A Valitov ◽  
F Z Utyashev ◽  
V M Imayev
2003 ◽  
Vol 110 ◽  
pp. 761-766
Author(s):  
A. M. Bragov ◽  
S. Brichikov ◽  
G. T. Gray ◽  
E. Kozlov ◽  
A. K. Lomunov ◽  
...  

2012 ◽  
Vol 488-489 ◽  
pp. 27-34 ◽  
Author(s):  
Muhammad Waseem Soomro ◽  
Thomas Rainer Neitzert

The influence of temperature, grain size and strain rate on superplasticity of magnesium is investigated. Different approaches are compared along with their experimental results to show the variation in the amount of superplasticity by varying above mentioned parameters. At room temperature magnesium alloys usually have poor formability but recent studies of some alloys such as ZE10, AZ31, AZ61 AZ60, AZ80 and AZ91 are pointing that by varying the temperature along with grain size and strain rate improved formability is possible or even superplastic forming of these alloys can be achieved to meet the demands of automotive, aircraft and other weight conscious industries.


2006 ◽  
Vol 134 ◽  
pp. 203-208 ◽  
Author(s):  
C. M. Cady ◽  
G. T. Gray ◽  
S. R. Chen ◽  
R. D. Field ◽  
D. R. Korzekwa ◽  
...  

2016 ◽  
Vol 684 ◽  
pp. 29-34
Author(s):  
Franz Berge ◽  
Markus Wollschläger ◽  
Christina Krbetschek ◽  
Madlen Ullmann

The influence of temperature, strain rate, and sheet thickness on the mechanical properties of twin-roll cast, rolled and heat-treated AZ31 was investigated under tensile loading from different directions (0°, 90°). To assess the forming behaviour of different sheet thicknesses (0.6 mm, 1 mm), tensile tests were performed with an electromechanical testing device between 20 °C and 300 °C at strain rates of 10−4 s−1 and 10−2 s−1. With rising temperature, the flow stress decreased while the elongation to failure (A80) increased, which may be related to the enhanced dislocation motion and the activation of additional nonbasal slip systems at T > 200 °C. It can be seen that the anisotropy of flow stress and elongation to failure was influenced by the temperature, the strain rate, and the sheet thickness.


2021 ◽  
Author(s):  
Ahmed Kacem ◽  
Hervé Laurent ◽  
Sandrine Thuillier

Warm forming is widely used as increasing the temperature is a solution to improve the formability of aluminum alloys. The stress (or strain) state is one of the most important factors affecting the formability of metals. In warm forming, the temperature and strain rate also play an important role on the deformation and fracture behavior. Figuring out the relationship between formability, temperature, strain rate and stress state is of great importance for providing more understanding of ductile fracture in warm forming conditions. Therefore, the objective of this work is to investigate the influence of temperature on the ductile fracture of a 6000 series aluminum alloy sheet metal under different stress states. Dogbone specimens, notched tensile specimens with different radius, tensile specimens with a central hole and shear specimens are used to cover a wide range of stress states. The hybrid experimental-numerical approach is used to identify the fracture strain and the corresponding stress state parameters (i.e. stress triaxiality and Lode parameter). To this end, fracture tests are carried out at 200°C using a tensile machine to determine the instant of fracture. Numerical simulations of the tensile tests are performed in 3D with the finite element code Abaqus to predict the strain field and calculate the evolution of the stress state. To accurately model the material behavior the positive strain rate sensitivity in the flow stress response at elevated temperature is considered. The results show a strong dependency of the ductile fracture on the temperature, strain rate and stress state.


2020 ◽  
Vol 52 (1) ◽  
pp. 181-193
Author(s):  
Masaya Higashi ◽  
Naoya Kanno

AbstractThe effect of the initial microstructure on the hot workability of a powder metallurgy Ni-based superalloy was investigated in the high-temperature range of 950 °C to 1180 °C and strain rate range of 0.001 to 1.0 s−1. Six samples with different initial microstructures were fabricated by various hot isostatic pressing (HIP) conditions and subsequent treatments such as hot extrusion. The coarse-grained samples exhibited low hot workability regardless of the deformation conditions. In contrast, the hot workability of the fine-grained samples significantly varied depending on the deformation conditions. The hot workability exhibited a peak at the sub-solvus temperature of ~ 1100 °C and decreased at temperatures higher and lower than this temperature. In addition, the hot workability decreased monotonically with increasing the strain rate. The prior particle boundaries (PPBs) acted as cavity nucleation sites and crack paths, especially at lower temperatures and higher strain rates, resulting in early fracture and low hot workability. With decreasing the grain size, the hot workability at the peak temperature improved. The extruded sample with the smallest grain size exhibited the best hot workability, owing to the avoidance of PPB fracture and the acceleration of dynamic recrystallization.


Sign in / Sign up

Export Citation Format

Share Document