scholarly journals Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

2013 ◽  
Vol 52 (3) ◽  
pp. 032004 ◽  
Author(s):  
L Cao ◽  
Z W Wang ◽  
Y Y Luo ◽  
M Liu
Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


Author(s):  
Angela O. Nieckele ◽  
Luis Fernando Figueira da Silva ◽  
Joa˜o Carlos R. Pla´cido

Thermal spallation is a possible drilling technique which consists of using hot supersonic jets as heat source to perforate hard rocks at high rates. This work presents a numerical analysis of a typical spallation drilling configuration, by the finite volume method. The time-averaged conservation equations of mass, momentum and energy are solved to determine the turbulent compressible gas phase flow field. Turbulence is predicted by the classical high Reynolds number κ-ε model, as well as with a low Reynolds number κ-ε model. The influence of the jet Reynolds number is investigated. Special attention is given to the rock surface temperature, since its accurate determination is required to predict spallation rates under field-drilling conditions.


Author(s):  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Ignazio Vitale ◽  
Fabio Turrini

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
J. M. Fernández Oro ◽  
J. González ◽  
R. Barrio Perotti ◽  
M. Galdo Vega

In this paper, a deterministic stress decomposition is applied over the numerical three-dimensional flow solution available for a single volute centrifugal pump. The numerical model has proven in previous publications its robustness to obtain the impeller to volute-tongue flow interaction, and it is now used as starting point for the current research. The main objective has been oriented toward a detailed analysis of the lack of uniformity in the flow that the volute tongue promotes on the blade-to-blade axisymmetric pattern. Through this analysis, the fluctuation field may be retrieved and main interaction sources have been pinpointed. The results obtained with the deterministic analysis become of paramount interest to understand the different flow features found in a typical centrifugal pump as a function of the flow rate. Moreover, this postprocessing tool provides an economic and easy procedure for designers to compare the different deterministic terms, also giving relevant information on the unresolved turbulence intensity scales. Complementarily, a way to model the turbulent effects in a systematic way is also presented, comparing their impact on the performance with respect to deterministic sources in a useful framework, that may be applied for similar kinds of pumps.


2010 ◽  
Vol 156-157 ◽  
pp. 948-955
Author(s):  
Guang Yao Meng ◽  
Ji Wen Tan ◽  
Yi Cui

Relative motion between grinding wheel and workpiece makes the lubricant film pressure formed by grinding fluid in the grinding area increase, consequently, dynamic pressure lubrication forms. The grinding fluid flow field mathematical model in smooth grinding area is established based on lubrication theory. The dynamic pressure of grinding fluid field, flow velocity and carrying capacity of lubricating film are calculated by the numerical analysis method. An analysis of effect of grinding fluid hydrodynamic on the total lifting force is performed, and the results are obtained.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


Sign in / Sign up

Export Citation Format

Share Document