scholarly journals Numerical simulation of hydraulic bulging using uniaxial and biaxial flow curves and different yield criteria

Author(s):  
Ved Prakash ◽  
D. Ravi Kumar ◽  
Marion Merklein ◽  
Hinnerk Hagenah
2020 ◽  
Vol 44 (5) ◽  
pp. 597-612
Author(s):  
S. Kilic ◽  
F. Ozturk ◽  
S. Toros
Keyword(s):  

2016 ◽  
Vol 716 ◽  
pp. 360-367
Author(s):  
Carlo Bruni

The present investigation aims at studying the flow behaviour of magnesium alloys under different conditions in terms of temperature, deformation velocities and deformation. The modelling approach was based on a proposed equation to model the shape of each flow curve through different variables. The modelled flow curves were subsequently compared with those obtained with experiments. The models were validated on flow curves not used in the building stage. It was observed that, for low temperature values, high deformation velocities and deformations the final part of the flow curve has to be adapted in order to be adopted for the description of material in the numerical simulation. In other words it needs to be extrapolated. Also for the high temperature, the flow softening has to be limited in order to allow the extrapolation queue required for elevated deformations. The deformation value at which the extrapolation can start can be predicted with an other proposed equation detailed in the paper.


2013 ◽  
Vol 554-557 ◽  
pp. 204-209 ◽  
Author(s):  
Lucian Lazarescu ◽  
Ioan Ciobanu ◽  
Ioan Pavel Nicodim ◽  
Dan Sorin Comsa ◽  
Dorel Banabic

The accuracy of the finite element simulation of sheet metal forming processes is mainly influenced by the shape of the yield surface used in the mechanical model and, in particular, by the number of input values used in the identification of the yield surface. This paper investigates the effect of the input values used for identifying the BBC 2005 yield criterion on the accuracy of the finite element predictions. The accuracy assessment of the simulation is based on the comparison of the numerical predictions obtained using the commercially available FE programme AUTOFORM and experimental measurements obtained from the hydraulic bulging of sheet metals. Thickness and strain distributions, as well as the geometry of the bulged specimen were taken as comparison parameters. The accuracy of the finite element predictions obtained using the Hill-48 and Barlat-89 yield criteria is also studied and discussed in comparison with the results provided by the BBC 2005 yield and the experimental data.


2010 ◽  
Vol 143-144 ◽  
pp. 1059-1064
Author(s):  
Wei Wei Wang ◽  
Jian Li Song ◽  
Jing Bo Yu ◽  
B.B. Jia

Synchronized hydraulic bulging forming technology on three-layer-metal tubes was studied. The possibility of three-layer-metal tubes formed by hydraulic bulging method was discussed and proved by elastic-plastic theory. The calculation formulas about the bulging pressure, the residual contact stress and the relationship between them were derived and the main process parameters were analyzed. Finite element analysis was carried out on bulging forming process using MSC. Marc. Practical bulging forming experiments were conducted and well compounded three-layer-metal tubes with tight interfaces were obtained. Through the comparison of the results of theoretical analysis, numerical simulation and practical experiments, proper parameters for the bulging process were obtained and the theoretical analysis was verified and proved.


2021 ◽  
Vol 27 (3) ◽  
pp. 103-108
Author(s):  
Peter Mulidrán ◽  
Emil Spišák ◽  
Miroslav Tomáš ◽  
Janka Majerníková ◽  
Ján Varga

In this work, the influence of material models used in the FEM simulation on the springback prediction is investigated. The interest of this paper is to extend the knowledge base regarding springback predictions in numerical simulation. The springback effect of a V-shaped sheet metal part made of TRIP steel, with a thickness of 0.75 mm was investigated. The bending angle was set to 90°.  In the numerical simulation, Hill48 and Barlat yield criteria were used in combination with Ludwik's and Swift's hardening models. Achieved data from the numerical simulations were compared and evaluated with experimental test results. The experimental results showed the relation between springback and calibration force. The effect of specimen cut direction on the springback was smaller in comparison with the calibration force. The numerical results of the springback were not identical with the experimentally achieved springback values in most cases. Particularly, when a calibration force of 1 800 N was used in the simulation. The simulation results showed a good correlation between experimental and numerical results, when Hill48 and Barlat yield criteria were used in combination with Ludwik hardening law and calibration force F with the value 900 N was applied.


Author(s):  
Amit Kumar ◽  
Ravi Kumar Digavalli

In this work, the formability of laser-welded tailored blanks of low carbon steel of two different thickness combinations in hydraulic bulging has been studied by numerical simulation. For material modeling, flow curves of the parent sheets were obtained in biaxial stress condition by conducting hydraulic bulge tests. These curves were used to extrapolate the uniaxial tensile curves up to large strains using the work equivalence principle. The limiting dome height in conventional forming and hydraulic bulging of tailor-welded blanks has been predicted in finite element simulations using the flow curves obtained directly from the hydraulic bulge tests and the extrapolated uniaxial tensile curves. Hydraulic bulging and conventional forming experiments on tailor-welded blanks have also been conducted to validate the predicted results. It has been found out that the predicted limiting dome height of the tailor-welded blanks in conventional forming and hydraulic bulging using extrapolated uniaxial tensile curves is closer to the experimental values when compared to the results obtained by using stress–strain curves obtained from hydraulic bulge tests. It has also been found that using an extrapolated uniaxial tensile curve it is also possible to predict strain distribution and percentage thinning more accurately. It has been observed that with an increase in thickness ratio, the peak pressure increased but the predicted values of peak pressure using flow curves obtained directly from hydraulic bulge tests are closer to the experimental values.


2013 ◽  
Vol 278-280 ◽  
pp. 487-490 ◽  
Author(s):  
Hui Feng Wang ◽  
Jing Tao Han ◽  
Zhang Hui

Bimetal composited tube is constituted by two different metals. Comparing with single metal tube, composited tube can make the best of optimum performance of based tube and clad tube. In present research, straight bimetal tubes were taken as the objectives and have been studied deeply. A new hydroform process is introduced in this paper, which can be used to form bimetal composited special tubes. Loading path, loading method, deformation of material, influence of frictional force etc. are studied using numerical simulation fully and the key technique and specialty of this technology were gained. Through simple equipment bimetal composited T-tube has been prepared.


2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

Sign in / Sign up

Export Citation Format

Share Document