scholarly journals Novel synthesis of high surface area nano-CeZrO 2 : transformation of the microstructure and textural properties as the effect of calcination

2018 ◽  
Vol 9 (4) ◽  
pp. 045015 ◽  
Author(s):  
Abdul Hadi ◽  
M Nazri Abu Shah ◽  
Kamariah Noor Ismail ◽  
Roslina Ismail
2014 ◽  
Vol 19 (2) ◽  
pp. 155-159 ◽  
Author(s):  
J. Y. Hao ◽  
Y. Y. Wang ◽  
C. W. Gong ◽  
Y. M. Tian ◽  
L. P. Liang

Cerâmica ◽  
2019 ◽  
Vol 65 (376) ◽  
pp. 585-591
Author(s):  
R. A. Sacramento ◽  
O. M. S. Cysneiros ◽  
B. J. B. Silva ◽  
A. O. S. Silva

Abstract Mesoporous materials are promising structures for application in catalysis and adsorption due to high surface area and large pore size. Mesoporous materials were synthesized by the hydrothermal method with novel surfactants, distinct from those observed in the literature, in order to carry out a study of its structure and to obtain materials with better textural properties. The structures synthesized with the surfactants Igepal CO630 and Brij O20 presented the best results of specific surface area, 1074 and 1075 m2.g-1, respectively. The obtained materials were characterized by XRD, TG/DTG, N2 adsorption-desorption, and FTIR techniques. XRD patterns indicated that the highly ordered mesoporous silica structures, such as MCM-41 and MCM-48, using CTMABr as the structure-directing agent and the SBA-15, SBA-16 and other SBA structures using different block copolymers were obtained. Through N2 adsorption-desorption isotherms, it was observed type IV isotherms, attributed to mesoporous materials. The FTIR spectra presented similar behaviors with characteristic vibrational bands of MCM and SBA type materials.


2019 ◽  
Vol 41 (4) ◽  
pp. 664-664
Author(s):  
Ruiyuan Tang Ruiyuan Tang ◽  
Junhui Hao Junhui Hao ◽  
Kai Liu Kai Liu ◽  
Yingyun Qiao Yingyun Qiao ◽  
Juntao Zhang and Yuanyu Tian Juntao Zhang and Yuanyu Tian

High surface area calcium aluminate is synthetized within a short time by using a carbon template solid state calcination method which involved addition of carbon black into the CaCO3 and Al2O3 powders, calcination, and carbon removal by steam. Vary carbon black dosage changed the textural properties of the calcium aluminate, such as the surface area. By varying carbon black dosage from 0 to 10.0 wt%, the calcium aluminate with a surface area ranging from 21.5 to 41.2 m2and#183;g–1 are successfully synthesized within 14.0 h. Furthermore, the nanometer sized CaCO3 and Al2O3 powders comprising carbon black could markedly reduce the calcination temperature without reducing the surface area. This research might lead to the cost-effective synthesis of calcium aluminate (Ca12Al14O33) in a short synthesis period.


2005 ◽  
Vol 81 (6) ◽  
pp. 1537-1540 ◽  
Author(s):  
Masayuki Imose ◽  
Yoshihiko Takano ◽  
Masaru Yoshinaka ◽  
Ken Hirota ◽  
Osamu Yamaguchi

2021 ◽  
Author(s):  
Miguel Burgos-Ruiz ◽  
Gloria Pelayo-Punzano ◽  
Encarnacion Ruiz-Agudo ◽  
Kerstin Elert ◽  
Carlos Rodriguez-Navarro

A novel synthesis route yields highly reactive nanobassanite with the largest surface area ever reported and with potential applications in biomedicine and heritage conservation.


2002 ◽  
Vol 20 (8) ◽  
pp. 707-722 ◽  
Author(s):  
Gamal M.S. El Shafei ◽  
Afaf A. Zahran

Perchlorated and persulphated mixed hydroxides of zirconium and titanium were prepared by coprecipitation and impregnation in aqueous HClO4 or (NH4)2S2O8 solutions of 0.05, 0.10, 0.20 and 0.40 M concentrations. An alternate sequence of impregnation followed by calcination or vice versa was conducted and the samples obtained studied using XRD, FT-IR, pyridine titration and low-temperature (–196°C) nitrogen adsorption methods. XRD indicated that the presence of titanium stabilized the tetragonal modification of zirconia and almost completely prevented the usual tetragonal → monoclinic transformation upon calcination at 650°C. Both S2O82– and ClO4− anions at their lowest concentration level (0.05 M) partially retarded the crystallization which occurred upon calcination at 650°C in their absence. However, the two anions showed different effects. Whereas the perchlorate anion prevented the formation of a crystalline titania phase (anatase) to a greater extent than that of crystalline zirconia, the persulphate anion showed the opposite effect. Complete inhibition was observed with both anions at a concentration of 0.4 M. This effect was attributed to adsorption of the anions on the hydroxy species of zirconium and titanium formed initially, as demonstrated by IR spectroscopy which showed that the anions were of lower symmetry, viz. C2v, due to their bonding to the hydroxy species. Calcination at 650°C caused the material formed initially to lose virtually all its initial high surface area because of crystallization. The prevention of crystallization by added anions was reflected in the retention of a relatively high surface area even after calcination at 650°C. The recorded difference in the interactions of the anions with the hydroxy species formed initially was also reflected in the texture of the anion-modified solids. The protecting influence of the ClO4− anion increased with its increasing concentration in the system, whereas the corresponding effect with the S2O82– anion increased up to 0.10 M concentration and then decreased at higher concentrations.


2021 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Sahira Joshi ◽  
Rekha Goswami Shrestha ◽  
Raja Ram Pradhananga ◽  
Katsuhiko Ariga ◽  
Lok Kumar Shrestha

Nanoporous carbon materials from biomass exhibit a high surface area due to well-defined pore structures. Therefore, they have been extensively used in separation and purification technologies as efficient adsorbents. Here, we report the iodine and methylene blue adsorption properties of the hierarchically porous carbon materials prepared from Areca catechu nut. The preparation method involves the phosphoric acid (H3PO4) activation of the Areca catechu nut powder. The effects of carbonization conditions (mixing ratio with H3PO4, carbonization time, and carbonization temperature) on the textural properties and surface functional groups were studied. The optimum textural properties were obtained at a mixing ratio of 1:1, carbonized for 3 h at 400 °C, and the sample achieved a high specific surface area of 2132.1 m2 g−1 and a large pore volume of 3.426 cm3 g−1, respectively. The prepared materials have amorphous carbon structures and contain oxygenated surface functional groups. Due to the well-defined micro-and mesopore structures with the high surface area and large pore volume, the optimal sample showed excellent iodine and methylene blue adsorption. The iodine number and methylene blue values were ca. 888 mg g−1 and 369 mg g−1, respectively. The batch adsorption studies of methylene dye were affected by pH, adsorbent dose, contact time, and initial concentration. The optimum parameters for the methylene blue adsorption were in alkaline pH, adsorbent dose of 2.8 g L−1, and contact time of 180 min. Equilibrium data could be best represented by the Langmuir isotherm model with a monolayer adsorption capacity of 333.3 mg g−1. Thus, our results demonstrate that the Areca catechu nut has considerable potential as the novel precursor material for the scalable production of high surface area hierarchically porous carbon materials that are essential in removing organic dyes from water.


2021 ◽  
Author(s):  
Lawrence Kioko Munguti ◽  
Francis Birhanu Dejene

Abstract Zeolite Na-A supported ZnO nanocomposites (ZnO/Zeolite Na-A NCs) were synthesized at low temperature (70 ℃) via the sol-gel process and characterized by X-ray diffraction technique (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and Fourier transform infrared (FTIR) spectroscopy for structural, morphological, optical and bonding properties. The textural properties and porosity were obtained by Brunauer-Emmett-Teller (BET) technique. The obtained XRD and microscopy results indicated that the obtained nanopowders were crystalline in nature and no collapse of the structure of zeolite Na-A. In addition, the synthesized ZnO nanoparticles occurred mainly on the surface of the zeolite support. It is clear that the zeolite supported ZnO nanoparticles were more dispersed as compared to the pure ZnO with improved porosity and high surface area. Photocatalytic activity for the ZnO/zeolite Na-A was tremendously increased which was attributed to the synergetic combined effects of both ZnO and zeolite aluminosilicate network such as increased surface area (SBET), high adsorption and restrained charge recombination.


Sign in / Sign up

Export Citation Format

Share Document