Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

2014 ◽  
Vol 2 (1) ◽  
pp. 015601 ◽  
Author(s):  
Fumio Ogawa ◽  
Chitoshi Masuda
2012 ◽  
Vol 430-432 ◽  
pp. 1269-1272
Author(s):  
Xian Feng Xu ◽  
Yan Yan Hu ◽  
Peng Xiao

In order to improve surface characteristics of carbon fibers, using nickel granules as catalysts, nano carbon with different morphologies was deposited in-situ on the surface of carbon fibers by the method of Chemical Vapor Deposition (CVD). The observations by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) indicated that keeping the excellent performance of plating nickels catalyst and a suitable deposition rate of Pyrogenation Carbon (PyC) are the key factors for getting Carbon Nanotube and Carbon Nanofiber (CNT/CNF). In this experiment, the optimum operation conditions are: plating time at 5min, deposition temperature at 1173K, deposition time at 2 hours, flow of C3H6, H2 and N2 at 30, 200 and 400ml/min respectively, deposition pressure at 700-1000Pa. Evolution rules of nano carbon are explained in growth mechanism of Catalytic Chemical Vapor Deposition (CCVD).


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

2017 ◽  
Vol 5 (16) ◽  
pp. 4068-4074 ◽  
Author(s):  
Xinliang Li ◽  
Xiaowei Yin ◽  
Meikang Han ◽  
Changqing Song ◽  
Hailong Xu ◽  
...  

Ti3C2TxMXenes modified within situgrown carbon nanotubes (CNTs) are fabricatedviaa simple catalytic chemical vapor deposition (CVD) process.


Sign in / Sign up

Export Citation Format

Share Document