Numerical simulation of temperature field during electron beam cladding for NbSi2 on the surface of Inconel617

2018 ◽  
Vol 5 (3) ◽  
pp. 036528
Author(s):  
Hailang Liu ◽  
Zhengwei Qi ◽  
Bo Wang ◽  
Guopei Zhang ◽  
Xiaoyu Wang ◽  
...  
2019 ◽  
Vol 25 (6) ◽  
pp. 989-997
Author(s):  
Yajun Yin ◽  
Wei Duan ◽  
Kai Wu ◽  
Yangdong Li ◽  
Jianxin Zhou ◽  
...  

Purpose The purpose of this study is to simulate the temperature distribution during an electron beam freeform fabrication (EBF3) process based on a fully threaded tree (FTT) technique in various scales and to analyze the temperature variation with time in different regions of the part. Design/methodology/approach This study presented a revised model for the temperature simulation in the EBF3 process. The FTT technique was then adopted as an adaptive grid strategy in the simulation. Based on the simulation results, an analysis regarding the temperature distribution of a circular deposit and substrate was performed. Findings The FTT technique was successfully adopted in the simulation of the temperature field during the EBF3 process. The temperature bands and oscillating temperature curves appeared in the deposit and substrate. Originality/value The FTT technique was introduced into the numerical simulation of an additive manufacturing process. The efficiency of the process was improved, and the FTT technique was convenient for the 3D simulations and multi-pass deposits.


2015 ◽  
Vol 58 (4) ◽  
pp. 478-484 ◽  
Author(s):  
Yu. F. Ivanov ◽  
E. A. Petrikova ◽  
O. V. Ivanova ◽  
I. A. Ikonnikova ◽  
A. V. Tkachenko

2008 ◽  
Vol 575-578 ◽  
pp. 660-665 ◽  
Author(s):  
Hong Ye ◽  
Yi Luo ◽  
Zhong Lin Yan ◽  
Bin Shen

Magnesium alloys are being increasingly used in automotive and aerospace structures. In this study, welding of AZ61 magnesium alloy with 10 mm thickness was carried out using vacuum electron beam welding (EBW). By using the finite element model and the 3D moving double ellipsoid heat source model, numerical simulation method was employed to study the influence of the electron beam current on the temperature field of welding process and weld penetration. The microstructure and microhardness of weld joint obtained by the optimized vacuum EBW process had been investigated in detail. The results show that the numerical simulation result basically matches the experimental result. A favorable joint had been obtained by EBW for AZ61 magnesium alloy, in which heat affected zone was not evident, the fusion zone (FZ) consisted of fine-equiaxed grain. The weld hardness was greater than that of the base metal.


2011 ◽  
Vol 418-420 ◽  
pp. 1640-1646
Author(s):  
Shao Gang Wang ◽  
Kuang Yu ◽  
Li Xing

The numerical simulation of electron beam welding temperature field for 2090 Al-Li alloy sheet of 2 mm thickness is conducted by using the ANSYS software. The combined model of Gauss surface heat source with cylindrical body heat source in linear attenuation is used according to the unique nail-shaped weld of electron beam welding joint, and the distribution cloud image of temperature field and the instantaneous weld thermal cycle curves of Al-Li alloy electron beam welding are obtained through calculation. The effect of welding parameters such as electron beam power and welding speed on the distribution of temperature field and weld width is investigated. Results show that electron beam welding has a very high rate of both temperature ascending and descending, and the rate of temperature ascending is higher than that of descending. With the increase of electron beam power or decrease of welding speed, the temperature of fusion zone elevates, and the weld width increases. The appearance of weld obtained through numerical simulation is greatly consistent with the practical welding.


2016 ◽  
Vol 879 ◽  
pp. 274-278 ◽  
Author(s):  
Jun Cao ◽  
Philip Nash

In an earlier study, a 3-D thermomechanical coupled finite element model was built and experimentally validated to investigate the evolution of the thermal residual stresses and distortions in electron beam additive manufactured Ti-6Al-4V build plates. In this study, an investigation using this robust and accurate model was focused on an efficient preheating method, in which the electron beam quickly scanned across the substrate to preheat the build plate prior to the deposition. Various preheat times, beam powers, scan rates, scanning paths and cooling times (between the end of current preheat scan/deposition layer and the beginning of the next preheat scan/deposition layer) were examined, and the maximum distortion along the centerline of the substrate and the maximum longitudinal residual stress along the normal direction on the middle cross-section of the build plate were quantitatively compared. The results show that increasing preheat times and beam powers could effectively reduce both distortion and residual stress for multiple layers/passes components.


2013 ◽  
Vol 807-809 ◽  
pp. 1505-1513 ◽  
Author(s):  
Amir A.B. Musa ◽  
Xiong Wei Zeng ◽  
Qing Yan Fang ◽  
Huai Chun Zhou

The optimum temperature within the reagent injection zone is between 900 and 1150°C for the NOX reduction by SNCR (selective non-catalytic reduction) in coal-fired utility boiler furnaces. As the load and the fuel property changes, the temperature within the reagent injection zone will bias from the optimum range, which will reduces significantly the de-NOX efficiency, and consequently the applicability of SNCR technology. An idea to improve the NOX reduction efficiency of SNCR by regulating the 3-D temperature field in a furnace is proposed in this paper. In order to study the new method, Computational fluid dynamics (CFD) model of a 200 MW multi-fuel tangentially fired boiler have been developed using Fluent 6.3.26 to investigate the three-fuel combustion system of coal, blast furnace gas (BFG), and coke oven gas (COG) with an eddy-dissipation model for simulating the gas-phase combustion, and to examine the NOX reduction by SNCR using urea-water solution. The current CFD models have been validated by the experimental data obtained from the boiler for case study. The results show that, with the improved coal and air feed method, average residence time of coal particles increases 0.3s, burnout degree of pulverized coal increases 2%, the average temperature at the furnace nose decreases 61K from 1496K to 1435K, the NO emission at the exit (without SNCR) decreases 58 ppm from 528 to 470 ppm, the SNCR NO removal efficiency increases 10% from 36.1 to 46.1%. The numerical simulation results show that this combustion adjustment method based on 3-D temperature field reconstruction measuring system in a 200 MW multi-fuel tangentially fired utility boiler co-firing pulverized coal with BFG and COG is timely and effective to maintain the temperature of reagent injection zone at optimum temperature range and high NOX removal efficiency of SNCR.


Sign in / Sign up

Export Citation Format

Share Document