Effects of hot rolling, intermediate annealing and cold rolling on microstructure, texture and mechanical properties of an Al-Mg-Si-Cu alloy

2018 ◽  
Vol 5 (10) ◽  
pp. 106521
Author(s):  
Yihan Wang ◽  
Lixin Zhang ◽  
Baisong Guo ◽  
Kai Li ◽  
Song Ni ◽  
...  
2009 ◽  
Vol 610-613 ◽  
pp. 810-814 ◽  
Author(s):  
Jing Zhang ◽  
Xu Feng Zhang ◽  
Fu Sheng Pan ◽  
Chuan Pu Liu ◽  
Qu Bo He

The microstructures, mechanical properties, and formability of an Mg-1.5Zn-0.1Zr alloy with rare earth element of Erbium addition have been examined by using optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy, and thermal mechanical testing. The results showed that Erbium combined with Mg and impurity elements forming small particles dispersed on the matrix. Therm-mechanical simulation in the temperature range from 250°C to 400°C and strain rate from 0.1 to 1.0 indicated that the flow stress decreases with the increase of the temperature and the decrease of the strain rate. Sheet samples were prepared through ingot casting, hot rolling, cold rolling, and intermediate annealing. Remarkable grain size refinement was realized through recrystallization during the rolling process. Good combination of strength and ductility was achieved by applying intermediate annealing before the very last cold rolling. Further improvement of ductility and formability could be obtained by conducting proper heat treatment on the finishing cold-rolled sheets.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1409
Author(s):  
Jinrong Zuo ◽  
Longgang Hou ◽  
Xuedao Shu ◽  
Wenfei Peng ◽  
Anmin Yin ◽  
...  

In order to obtain fine grained structure efficiently, a new multi-step rolling process (MSR: pre-deformation + intermediate annealing + hot deformation) was applied in Al-Zn-Mg-Cu plates. Conventional hot rolling (CHR) was also carried out as a contrast experiment. The evolution of microstructures and improvement of mechanical properties were analyzed by optical microscope, scanning electron microscope, transmission electron microscope, X-ray diffractometer, and tensile tests. The results show that the MSR process can obtain finer longitudinal grain size and better mechanical properties than CHR, which can be explained as follows: spheroidization of precipitates wrapped by high density dislocations could be promoted by increased pre-deformation; numerous ordered substructures were formed during short-period intermediate annealing at high temperature; in the subsequent hot rolling process, the retained spherical precipitates pinned dislocations and boundaries. With the increase of accumulated strain, low angle grain boundaries gradually transformed into high angle grain boundaries, leading to grain refinement. With the increased pre-deformation (MSR1 20 + 60%, MSR2 40 + 40%, MSR3 60 + 20%), the effect of grain refinement and plasticity improvement gradually weakened. The optimum thermomechanical process (MSR1 solid solution + pre-deformation (300 °C/20%) + intermediate annealing (430 °C/5 min) + hot deformation (400 °C/60%)) was obtained, which can increase elongation by ~25% compared with the CHR process, while maintaining similar high strength for reduced longitudinal grain size.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Qiang Wu ◽  
Kunning Fu ◽  
Ruizhi Wu ◽  
Jinghuai Zhang ◽  
Legan Hou ◽  
...  

The as-cast Mg-14Li-1Zn alloy was hot rolled at different temperatures with the reduction of 50%, followed by cold rolling with the reduction of 80%. The effects of the hot rolling temperature on the microstructure and mechanical properties of the final specimens were investigated. The results show that the higher rolling temperature brings about a more homogeneous microstructure, which is favorable for the subsequent cold rolling. When the hot rolling temperature is 300°C, the final specimen possesses the highest tensile strength and hardness of 238 MPa and 67.7 HV, respectively. When the hot rolling temperature is 200°C, the final specimen possesses the highest elongation of 24.6%.


2018 ◽  
Vol 142 ◽  
pp. 309-320 ◽  
Author(s):  
Xiaofeng Wang ◽  
Mingxing Guo ◽  
Jinru Luo ◽  
Chao Xie ◽  
Yonggang Wang ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Sign in / Sign up

Export Citation Format

Share Document