Microstructural characterization and mechanical properties of Al7075/BN metal matrix composites prepared by conventional casting method

2019 ◽  
Vol 6 (6) ◽  
pp. 066506 ◽  
Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
K Chandrasekaran ◽  
T Ramkumar
2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2014 ◽  
Vol 984-985 ◽  
pp. 280-284 ◽  
Author(s):  
S.A. Kori ◽  
S.L. Biradar ◽  
Virupaxi Auradi

Current work, aims at preparation and characterization of Al-Al3Ti in-situ metal matrix composites with varying percentage of in-situ Al3Ti (3 and 5%) reinforcement. The composites were prepared by the salt route involving reaction of commercial purity aluminum (99.7%) and potassium titanium flourate halide (K2TiF6) salt at a reaction temperature of 800°C and with 60min. holding time. The prepared composites were subjected to microstructural studies using Scanning Electron Microscope. Further, the work aims at evaluating mechanical properties of the prepared composites as per ASTM standards. Microstructural characterization using SEM revealed blocky morphology of Al3Ti intermetallics with fairly homogeneous distribution. Insitu Al-Al3Ti composites have shown better mechanical properties when compared to the unreinforced Al matrix.


2015 ◽  
Vol 813-814 ◽  
pp. 230-234 ◽  
Author(s):  
T.S.A. Suryakumari ◽  
S. Ranganathan ◽  
P. Shankar

The present investigation involves studying the mechanical properties of the fabricated aluminium 7075 hybrid metal matrix composites reinforced with various weight % of SiC and Al2 O3 particulates by stir casting method. The Al 7075 hybrid metal matrix composites specimen were fabricated using L9 orthogonal array. The mechanical properties like Brinell Harness (BHN), Rockwell Hardness (HRC) and impact loads were experimented. The mechanical properties like hardness and impact loads have improved with the increase in weight percentage of SiC and Al2O3 particulates in the hybrid aluminium matrix.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Sign in / Sign up

Export Citation Format

Share Document