Effects of Al mass fraction on corrosive wear and electrochemical corrosion of laser cladded AlFeCoCr amorphous coating in 3.5 wt% NaCl solution

2019 ◽  
Vol 6 (7) ◽  
pp. 076552
Author(s):  
Wu Chen ◽  
Kong Dejun
2019 ◽  
Vol 66 (5) ◽  
pp. 537-543 ◽  
Author(s):  
Zhou Weitong ◽  
Kong Dejun

Purpose This paper aims to enhance the corrosive wear and electrochemical corrosion of Ti–6Al–4V alloy. Design/methodology/approach A CoCrAlYTaSi alloy coating was fabricated on Ti–6Al–4V alloy using a laser thermal spraying (LTS). The surface and cross-section morphologies, chemical elements, phases and bonding strength of the obtained coating were analyzed using a scanning electron microscope, energy dispersive spectroscope, X-ray diffraction and scratch test, respectively, The corrosive wear and electrochemical corrosion of CoCrAlYTaSi coating in 3.5 Wt.% NaCl solution were investigated using a wear tester and electrochemical workstation, respectively. Findings The average coefficient of frictions (COFs) of CoCrAlYTaSi coating under the wear loads of 2, 4 and 6 N are 1.31, 1.02 and 0.88, respectively; and the corresponding wear rates are 0.66 × 10−4, 1.10 × 10−4 and 1.30 × 10−4 mm3·N–1·m–1, respectively. The wear mechanism under the wear load of 2 N is abrasive wear, while those under the wear loads of 4 and 6 N are adhesive wear and abrasive wear. The charge transfer resistance of CoCrAlYTaSi coating is 5.368 × 105 Ω·cm2, higher than 2.193 × 105 of the substrate. Originality/value In this study, a CoCrAlYTaSi coating was firstly fabricated on Ti–6Al–4V alloy using a LTS. Its corrosive wear and electrochemical corrosion in 3.5 Wt.% NaCl solution were investigated, which played a protective role of corrosive wear on Ti–6Al–4V alloy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peng Li ◽  
Xiya Huang ◽  
Dejun Kong

Purpose The purpose of this paper is to investigate the effects of load and speed on the corrosive wear performance of Al coating in 3.5% NaCl solution, which provided an experimental reference for the anti-corrosion engineering on offshore platforms. Design/methodology/approach A layer of Al coating was prepared on S355 steel using an arc spraying. The corrosive wear test was carried out with CFT–1 type surface property tester. The effects of load and speed on the corrosive wear performance of Al coating were investigated and the wear mechanism was also discussed. The electrochemical tests were conducted using a CHI660E type electrochemical workstation, the anti-corrosion mechanism was analyzed. Findings The average coefficient of frictions (COFs) of Al coating under loads of 1.5, 2.5 and 3.5 N are 0.745, 0.847 and 0.423, the wear mechanism is abrasive wear. The average COFs of Al coating at the speeds of 200, 400 and 600 rpm are 0.745, 0.878 and 0.617, respectively, the wear mechanism at the speeds of 200 and 400 rpm are abrasive wear, while that at the speed of 600 rpm is abrasive wear and fatigue wear. The anti-corrosion mechanism is the isolation of Cl– corrosion and cathodic protection of sacrificial anode. Originality/value This paper mainly studied corrosive wear and electrochemical corrosion performances of Al coating. This study hereby confirms that this manuscript is the original work and has not been published nor has it been submitted simultaneously elsewhere. This paper further confirms that all authors have checked the manuscript and have agreed to the submission.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2549
Author(s):  
Wenchao Yang ◽  
Jun Mao ◽  
Yueyuan Ma ◽  
Shuyuan Yu ◽  
Hongping He ◽  
...  

Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02–0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.


2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


CORROSION ◽  
2012 ◽  
Vol 68 (5) ◽  
pp. 388-397 ◽  
Author(s):  
N.-G. Wang ◽  
R.-C. Wang ◽  
C.-Q. Peng ◽  
Y. Feng

Magnesium alloys AP65 with and without 0.3% (mass fraction) manganese additions were prepared by melting and casting. Their discharge and corrosion behavior in 3.5% sodium chloride (NaCl) solution was investigated with electrochemical measurement, immersion testing, and corrosion morphology observation. The results show that manganese promotes the grain refinement and reduces the self corrosion rate of AP65 alloy. Magnesium alloy AP65 added with manganese provides a more negative discharge potential than that without the addition of manganese, attributed to the homogeneously distributed Al11Mn4 particles, which facilitate the self-peeling of corrosion products during the discharge process. This means that the discharge and corrosion performance of AP65 alloy can be improved by adding manganese.


2012 ◽  
Vol 22 (4) ◽  
pp. 977-982 ◽  
Author(s):  
Yan-fang GAO ◽  
Cong-qian CHENG ◽  
Jie ZHAO ◽  
Li-hua WANG ◽  
Xiao-gang LI

Sign in / Sign up

Export Citation Format

Share Document