Effects of surface-modified pineapple fibre-reinforced micro B4C and CTBN rubber particle toughened epoxy hybrid composites in mechanical, impact damage, thermal and water absorption behavior

2019 ◽  
Vol 6 (11) ◽  
pp. 115343 ◽  
Author(s):  
M Vinothkumar ◽  
V Jaiganesh ◽  
R Raviraja Malarvannan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2018 ◽  
Vol 135 (26) ◽  
pp. 46405 ◽  
Author(s):  
Juan Chen ◽  
Yu Zou ◽  
Heyi Ge ◽  
Zedong Cui ◽  
Shanshan Liu

2013 ◽  
Vol 473 ◽  
pp. 39-45 ◽  
Author(s):  
Guo Wei Zhao ◽  
Yong Chen ◽  
De Yong Li ◽  
Bin Tang

The aim was to analyze failure mechanism of electromagnetic relay caused by mechanical impact. The principle of electromagnetic relays was studied and the effect of mechanical impact on electromagnetic relays was analyzed in this paper. Based on the established magnetic circuit model, the relationship of the magnetic field strength, the electromagnetic attraction and the impact damage degree was studied. Then, the damage intensity of mechanical impact on magnetic circuit was decided. Afterwards, the structure of electromagnetic relays was improved, and the mechanical impact simulation was studied by ANSYS. The results show that the uncontrollability of electromagnetic relay is mainly caused by air gap, which is aroused by mechanical impact; in addition, the size of air gap is inversely proportional to electromagnetic attraction force. Moreover, the improved structure of relays can increase impact resistance and broaden the scope of engineering application of electromagnetic relay.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1395 ◽  
Author(s):  
Liwei Wu ◽  
Wei Wang ◽  
Qian Jiang ◽  
Chunjie Xiang ◽  
Ching-Wen Lou

The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1501 ◽  
Author(s):  
Soundhar Arumugam ◽  
Jayakrishna Kandasamy ◽  
Ain Umaira Md Shah ◽  
Mohamed Thariq Hameed Sultan ◽  
Syafiqah Nur Azrie Safri ◽  
...  

This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young’s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 806 ◽  
Author(s):  
Hom Nath Dhakal ◽  
Elwan Le Méner ◽  
Marc Feldner ◽  
Chulin Jiang ◽  
Zhongyi Zhang

Understanding the damage mechanisms of composite materials requires detailed mapping of the failure behaviour using reliable techniques. This research focuses on an evaluation of the low-velocity falling weight impact damage behaviour of flax-basalt/vinyl ester (VE) hybrid composites. Incident impact energies under three different energy levels (50, 60, and 70 Joules) were employed to cause complete perforation in order to characterise different impact damage parameters, such as energy absorption characteristics, and damage modes and mechanisms. In addition, the water absorption behaviour of flax and flax basalt hybrid composites and its effects on the impact damage performance were also investigated. All the samples subjected to different incident energies were characterised using non-destructive techniques, such as scanning electron microscopy (SEM) and X-ray computed micro-tomography (πCT), to assess the damage mechanisms of studied flax/VE and flax/basalt/VE hybrid composites. The experimental results showed that the basalt hybrid system had a high impact energy and peak load compared to the flax/VE composite without hybridisation, indicating that a hybrid approach is a promising strategy for enhancing the toughness properties of natural fibre composites. The πCT and SEM images revealed that the failure modes observed for flax and flax basalt hybrid composites were a combination of matrix cracking, delamination, fibre breakage, and fibre pull out.


Sign in / Sign up

Export Citation Format

Share Document