scholarly journals A study on the microstructural evolution and subgrain size dependent constitutive equation of a type of maraging steel in the solid solution treatment process

2021 ◽  
Vol 8 (4) ◽  
pp. 046502
Author(s):  
Y Z Zhu ◽  
T Y Zhao ◽  
H Huang ◽  
H Peng ◽  
F W Hu ◽  
...  
Materials ◽  
2017 ◽  
Vol 10 (8) ◽  
pp. 858 ◽  
Author(s):  
Dan Song ◽  
Cheng Li ◽  
Liwen Zhang ◽  
Xiaolong Ma ◽  
Guanghui Guo ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1812 ◽  
Author(s):  
Xiaoda Liu ◽  
Ming Yin ◽  
Shaohua Zhang ◽  
Huan Wei ◽  
Baosheng Liu ◽  
...  

The corrosion behavior of Mg-3Al-xGe (x = 1, 3, 5) alloy in as-cast and as-solid was investigated by virtue of microstructure, corrosion morphology observation, and electrochemical measurement. Among the as-cast alloys, the corrosion rate of Mg-3Al-1Ge with a discontinuous bar-morphology was the highest, which was 101.7 mm·a−1; the corrosion rate of Mg-3Al-3Ge with a continuous network distribution was the lowest, which was 23.1 mm·a−1; and the corrosion rate of Mg-3Al-5Ge of Ge-enriched phase with sporadic distribution was in-between, which was 63.9 mm·a−1. It is suggested that the morphology of the Mg2Ge phase changes with a change in Ge content, which affects the corrosion performance of the alloy. After solid solution treatment, the corrosion rate of the corresponding solid solution alloy increased—Mg-3Al-1Ge to 140.5 mm·a−1, Mg-3Al-3Ge to 52.9 mm·a−1, and Mg-3Al-5Ge to 87.3 mm·a−1, respectively. After investigation of the microstructure, it can be suggested that solid solution treatment dissolves the Mg17Al12 phase, which changes the phase composition of the alloy and also affects its microstructure, thus affecting its corrosion performance.


2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.


2020 ◽  
Vol 9 (5) ◽  
pp. 11392-11401
Author(s):  
Yongpeng Zhuang ◽  
Pengwen Zhou ◽  
Hongxia Wang ◽  
Kaibo Nie ◽  
Yiming Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document