Robust learning-based X-ray image denoising - potential pitfalls, their analysis and solutions

Author(s):  
Sai Gokul Hariharan ◽  
Christian Kaethner ◽  
Norbert Strobel ◽  
Markus Kowarschik ◽  
Rebecca Fahrig ◽  
...  

Abstract Purpose: Since guidance based on X-ray imaging is an integral part of interventional procedures, continuous efforts are taken towards reducing the exposure of patients and clinical staff to ionizing radiation. Even though a reduction in the X-ray dose may lower associated radiation risks, it is likely to impair the quality of the acquired images, potentially making it more difficult for physicians to carry out their procedures. Method: We present a robust learning-based denoising strategy involving model- based simulations of low-dose X-ray images during the training phase. The method also utilizes a data-driven normalization step - based on an X-ray imaging model - to stabilize the mixed signal-dependent noise associated with X-ray images. We thoroughly analyze the method's sensitivity to a mismatch in dose levels used for training and application. We also study the impact of differing noise models used when training for low and very low-dose X-ray images on the denoising results. Results: A quantitative and qualitative analysis based on acquired phantom and clinical data has shown that the proposed learning-based strategy is stable across different dose levels and yields excellent denoising results, if an accurate noise model is applied. We also found that there can be severe artifacts when the noise characteristics of the training images are significantly different from those in the actual images to be processed. This problem can be especially acute at very low dose levels. During a thorough analysis of our experimental results, we further discovered that viewing the results from the perspective of denoising via thresholding of sub-band co efficients can be very beneficial to get a better understanding of the proposed learning-based denoising strategy. Conclusion: The proposed learning-based denoising strategy provides scope for significant X-ray dose reduction without the loss of important image information if the characteristics of noise is accurately accounted for during the training ph

Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 167
Author(s):  
Unai Cortada ◽  
María Carmen Hidalgo ◽  
Julián Martínez ◽  
María José de la Torre

The abandoned mining district of Linares (South Spain) is marked with waste from the mining and the processing of metal ores that pose an environmental hazard to watercourses. A combined analysis of waste, sediments and water was carried out to analyse the impact of a smelter on Baños Creek. The composition of the facility waste was determined using X-ray diffractometry and scanning electron microscopy. The total contents of the metal(loid)s in the waters and sediments of the watercourse were analysed, and sequential metal(loid) extraction of solid samples was carried out. The facility wastes consisted mainly of secondary minerals, such as natropharmacosiderite and spertiniite, as well as rare metal salts, such as mopungite and NaPb2(CO3)2(OH). The leachates generated by these wastes were highly alkaline, with a pH of 10 and a total dissolved solids concentration of approximately 9 g L−1. This Na-bicarbonate-type water had an As concentration above 200 mg L−1 and elevated levels of Pb, Sb and Zn (5029 µg L−1, 841 µg L−1 and 525 µg L−1, respectively). This highly contaminated lixiviate had a significant effect on the chemical quality of the waters and the bioavailability of metal(loid)s in the creek sediments, especially in the headwaters. In this zone, the As, Pb, Sb and Zn concentrations in the most mobile fraction of the sediments reached 1035 mg kg−1, 261 mg kg−1, 45 mg kg−1 and 30 mg kg−1, respectively. By comparison, smelter slag and mining waste have a much lower impact on the waters and the mobile fraction of the sediments, while significantly increasing the total concentration of these potentially toxic elements in creek sediments.


2014 ◽  
Vol 64 (12) ◽  
pp. 1907-1911
Author(s):  
Uikyu Je ◽  
Hyosung Cho ◽  
Minsik Lee ◽  
Jieun Oh ◽  
Yeonok Park ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Arnav R. Mistry ◽  
Daniel Uzbelger Feldman ◽  
Jie Yang ◽  
Eric Ryterski

Objective(s). The major challenge encountered to decrease the milliamperes (mA) level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies.Study Design. A LDXI in static (group 1) and dynamic (group 2) modes was compared to medical fluoroscopy (group 3), digital intraoral radiography (group 4), and CBCT scan (group 5) using a dental phantom.Results. The Mann-Whitney test showed no statistical significance(α=0.01)in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5.Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future.


Author(s):  
David Mascali ◽  
Eugenia Naselli ◽  
Richard Racz ◽  
Sándor Biri ◽  
Luigi Celona ◽  
...  

Abstract We hereby report the study of confinement and electron losses dynamics in the magnetic trap of an Electron Cyclotron Resonance Ion Source (ECRIS) using a special multi-diagnostic setup that has allowed the simultaneous collection of plasma radio-self-emission and X-ray images in the range 500 eV - 20 keV. Argon plasmas were generated in single and two close frequency heating (TCFH) modes. Evidences of turbulent regimes have been found: for stable and unstable configurations quantitative characterizations of the plasma radio self-emission have been carried out, then compared with local measurement of plasma energy content evaluated by X-ray imaging. This imaging method is the only one able to clearly separate X-ray radiation coming from the plasma from the one coming from the plasma chamber walls. X-ray imaging has been also supported and benchmarked by volumetric spectroscopy performed via SDD and HPGe detectors. The obtained results in terms of X-ray intensity signal coming from the plasma core and from the plasma chamber walls have permitted to estimate the average ratio: plasma vs. walls (i.e., plasma losses) as a function of input RF power and pumping wave frequency, showing an evident increase (above the experimental errors) of the intensity in the 2-20 keV energy range due to the plasma losses in case of unstable plasma. This ratio was well correlated with the strength of the instabilities, in single frequency heating (SFH) operation mode; in TCFH mode, under specific power balance conditions and frequency combinations, it was possible to damp the instabilities, thus the plasma losses were observed to decrease and a general reconfiguration of the spatial plasma structure occurred (the X-ray emission was more concentrated in the center of the plasma chamber). In the end, a simplified model has been used to simulate electron heating under different pumping frequencies, discussing the impact of velocity anisotropy vs. the onset of the instability, and the mechanism of particles diffusion in the velocity space in stable and unstable regimes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pasquale Delogu ◽  
Vittorio Di Trapani ◽  
Luca Brombal ◽  
Giovanni Mettivier ◽  
Angelo Taibi ◽  
...  

Abstract The limits of mammography have led to an increasing interest on possible alternatives such as the breast Computed Tomography (bCT). The common goal of all X-ray imaging techniques is to achieve the optimal contrast resolution, measured through the Contrast to Noise Ratio (CNR), while minimizing the radiological risks, quantified by the dose. Both dose and CNR depend on the energy and the intensity of the X-rays employed for the specific imaging technique. Some attempts to determine an optimal energy for bCT have suggested the range 22 keV–34 keV, some others instead suggested the range 50 keV–60 keV depending on the parameters considered in the study. Recent experimental works, based on the use of monochromatic radiation and breast specimens, show that energies around 32 keV give better image quality respect to setups based on higher energies. In this paper we report a systematic study aiming at defining the range of energies that maximizes the CNR at fixed dose in bCT. The study evaluates several compositions and diameters of the breast and includes various reconstruction algorithms as well as different dose levels. The results show that a good compromise between CNR and dose is obtained using energies around 28 keV.


1999 ◽  
Author(s):  
Reza A. Zoroofi ◽  
Shinichi Tamura ◽  
Yoshinobu Sato ◽  
Yuji Ogata ◽  
Kazuo Inamoto ◽  
...  
Keyword(s):  
Low Dose ◽  
X Ray ◽  

2013 ◽  
Vol 740-742 ◽  
pp. 121-124 ◽  
Author(s):  
Enrique Escobedo-Cousin ◽  
Konstantin Vassilevski ◽  
Toby Hopf ◽  
Nick G. Wright ◽  
Anthony O’Neill ◽  
...  

Few-layers graphene films (FLG) were grown by local solid phase epitaxy on a semi-insulating 6H-SiC substrate by annealing Ni films deposited on the Si and C-terminated faces of the SiC. The impact of the annealing process on the final quality of the FLG films is studied using Raman spectroscopy. X-ray photoelectron spectroscopy was used to verify the presence of graphene on the sample surface. We also demonstrate that further device fabrication steps such as dielectric deposition can be carried out without compromising the FLG films integrity.


2009 ◽  
Vol 36 (9Part3) ◽  
pp. 4321-4321
Author(s):  
M Wronski ◽  
A Reznik ◽  
J Rowlands ◽  
W Zhao
Keyword(s):  
Low Dose ◽  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document